1
|
Structural studies of full-length receptor tyrosine kinases and their implications for drug design. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 124:311-336. [PMID: 33632469 DOI: 10.1016/bs.apcsb.2020.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Receptor tyrosine kinases (RTKs) are important drug targets for cancer and immunological disorders. Crystal structures of individual RTK domains have contributed greatly to the structure-based drug design of clinically used drugs. Low-resolution structures from electron microscopy are now available for the RTKs, EGFR, PDGFR, and Kit. However, there are still no high-resolution structures of full-length RTKs due to the technical challenges of working with these complex, membrane proteins. Here, we review what has been learned from structural studies of these three RTKs regarding their mechanisms of ligand binding, activation, oligomerization, and inhibition. We discuss the implications for drug design. More structural data on full-length RTKs may facilitate the discovery of druggable sites and drugs with improved specificity and effectiveness against resistant mutants.
Collapse
|
2
|
Guo T, Cao G, Li Y, Zhang Z, Nör J, Clarkson B, Liu J. Signals in Stem Cell Differentiation on Fluorapatite-Modified Scaffolds. J Dent Res 2018; 97:1331-1338. [PMID: 29995454 PMCID: PMC6728582 DOI: 10.1177/0022034518788037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Previously, we reported that the fluorapatite (FA)-modified polycaprolactone (PCL) nanofiber could be an odontogenic/osteogenic inductive tissue-engineering scaffold by inducing stem cell differentiation and mineralization. The present study aimed to explore which of the signal pathways affected this differentiation and mineralization process. The Human Signal Transduction PathwayFinder RT2 Profiler PCR Array was used to analyze the involvement of potential signal transduction pathways during human dental pulp stem cell (DPSCs) osteogenic differentiation induced by FA-modified PCL nanofiber scaffolds. Based on the results, perturbation studies of the signaling pathways hedgehog, insulin, and Wnt were performed. Moreover, the autophagy process was studied, as indicated by the expression of the microtubule-associated protein 1 light chain 3A/B-II (LC3-II) and the cell osteogenic phenotypic changes. In a comparison of the cells grown on PCL + FA scaffolds and those on PCL-only scaffolds, the transcript expression of BMP2, BMP4, FOXA2, PTCH1, WNT1, and WNT2 (PCR array-labeled signal proteins of the hedgehog pathway); CEBPB, FASN, and HK2 (PCR array-labeled signal proteins of the insulin pathway); and CCND1, JUN, MYC, TCF7, and WISP1 (PCR array-labeled signal proteins of the Wnt pathway) doubled at day 14 when obvious cell osteogenic differentiation occurred. Phenotypically, in all the perturbation groups at day 14, ALP activity, OPN, and autophagy marker LC3-II expression were coincidently decreased. Consistently, no positive alizarin red staining or von Kossa staining was observed in the specimens from these perturbation groups at day 28. The results showed that when obvious cell differentiation occurred at day 14 on PCL + FA control groups, the inhibition of the hedgehog, insulin, and Wnt pathways significantly decreased DPSC osteogenic differentiation and mineralization. The osteogenic differentiation of DPSCs grown on FA-modified PCL scaffolds appeared to be positively modulated by the hedgehog, insulin, and Wnt signal pathways, which were coordinated with and/or mediated by the cell autophagy process.
Collapse
Affiliation(s)
- T. Guo
- Nanjing Stomatological Hospital, Medical
School of Nanjing University, Nanjing, China
- Department of Cariology, Restorative
Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, MI,
USA
- Department of Stomatology, Nanjing
Jinling Hospital, Nanjing, China
| | - G. Cao
- Department of Stomatology, Nanjing
Jinling Hospital, Nanjing, China
| | - Y. Li
- Department of Cariology, Restorative
Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, MI,
USA
- Department of Oral and Maxillofacial
Surgery, State Key Laboratory of Military Stomatology, School of Stomatology, The
Fourth Military Medical University, Xian, China
| | - Z. Zhang
- Department of Cariology, Restorative
Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, MI,
USA
| | - J.E. Nör
- Department of Cariology, Restorative
Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, MI,
USA
| | - B.H. Clarkson
- Department of Cariology, Restorative
Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, MI,
USA
| | - J. Liu
- Department of Cariology, Restorative
Sciences and Endodontics, Dental School, University of Michigan, Ann Arbor, MI,
USA
| |
Collapse
|