1
|
Li X, Li C, Wureli H, Ni W, Zhang M, Li H, Xu Y, Rizabek K, Bolatkhan M, Askar D, Gulzhan K, Hou X, Hu S. Screening and evaluating of long non-coding RNAs in prenatal and postnatal pituitary gland of sheep. Genomics 2019; 112:934-942. [PMID: 31200027 DOI: 10.1016/j.ygeno.2019.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 12/18/2022]
Abstract
Long non-coding RNAs are transcribed into RNA molecules that are >200 nucleotides in length. However, the expression and function analysis of lncRNAs in the sheep pituitary gland are still lacking. In this study, we identified 1755 lncRNAs (545 annotated lncRNAs and 1210 novel lncRNAs) from RNA-seq data in the pituitary gland of embryonic and adult sheep. A total of 235 lncRNAs were differentially expressed between embryonic and adult group. We verified the presence of some lncRNAs using RT-PCR and DNA sequencing, and identified some differentially expressed lncRNAs using qPCR. We also investigated the role of cis-acting lncRNAs on target genes. GO and KEGG enrichment analysis revealed that the target genes of lncRNAs were involved in the regulation of hormones secretion and some signaling pathways in the sheep pituitary gland. Our study provides comprehensive expression profiles of lncRNAs and valuable resource for understanding their function in the pituitary gland.
Collapse
Affiliation(s)
- Xiaoyue Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Cunyuan Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China; College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Hazi Wureli
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Wei Ni
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China.
| | - Mengdan Zhang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Huixiang Li
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Yueren Xu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Kadyken Rizabek
- Department of Food Engineering, Kazakh National Agrarian University, Almaty Province 050010, Kazakhstan
| | - Makhatov Bolatkhan
- Department of Technology and Biological Resources, Kazakh National Agrarian University, Almaty Province 050010, Kazakhstan
| | - Dzhunysov Askar
- Department of Technology and Biological Resources, Kazakh National Agrarian University, Almaty Province 050010, Kazakhstan
| | - Kulmanova Gulzhan
- Department of Technology and Biological Resources, Kazakh National Agrarian University, Almaty Province 050010, Kazakhstan
| | - Xiaoxu Hou
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Shengwei Hu
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
2
|
Transcriptome analysis of immune genes in peripheral blood mononuclear cells of young foals and adult horses. PLoS One 2018; 13:e0202646. [PMID: 30183726 PMCID: PMC6124769 DOI: 10.1371/journal.pone.0202646] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 08/07/2018] [Indexed: 12/14/2022] Open
Abstract
During the neonatal period, the ability to generate immune effector and memory responses to vaccines or pathogens is often questioned. This study was undertaken to obtain a global view of the natural differences in the expression of immune genes early in life. Our hypothesis was that transcriptome analyses of peripheral blood mononuclear cells (PBMCs) of foals (on day 1 and day 42 after birth) and adult horses would show differential gene expression profiles that characterize natural immune processes. Gene ontology enrichment analysis provided assessment of biological processes affected by age, and a list of 897 genes with ≥2 fold higher (p<0.01) expression in day 42 when compared to day 1 foal samples. Up-regulated genes included B cell and T cell receptor diversity genes; DNA replication enzymes; natural killer cell receptors; granzyme B and perforin; complement receptors; immunomodulatory receptors; cell adhesion molecules; and cytokines/chemokines and their receptors. The list of 1,383 genes that had higher (p<0.01) expression on day 1 when compared to day 42 foal samples was populated by genes with roles in innate immunity such as antimicrobial proteins; pathogen recognition receptors; cytokines/chemokines and their receptors; cell adhesion molecules; co-stimulatory molecules; and T cell receptor delta chain. Within the 742 genes with increased expression between day 42 foal and adult samples, B cell immunity was the main biological process (p = 2.4E-04). Novel data on markedly low (p<0.0001) TLR3 gene expression, and high (p≤0.01) expression of IL27, IL13RA1, IREM-1, SIRL-1, and SIRPα on day 1 compared to day 42 foal samples point out potential mechanisms of increased susceptibility to pathogens in early life. The results portray a progression from innate immune gene expression predominance early in life to adaptive immune gene expression increasing with age with a putative overlay of immune suppressing genes in the neonatal phase. These results provide insight to the unique attributes of the equine neonatal and young immune system, and offer many avenues of future investigation.
Collapse
|
3
|
Tarlinton RE, Alder L, Moreton J, Maboni G, Emes RD, Tötemeyer S. RNA expression of TLR10 in normal equine tissues. BMC Res Notes 2016; 9:353. [PMID: 27435589 PMCID: PMC4952062 DOI: 10.1186/s13104-016-2161-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/13/2016] [Indexed: 11/14/2022] Open
Abstract
Background Toll like receptors are one of the major innate immune system pathogen recognition systems. There is little data on the expression of the TLR10 member of this family in the horse. Results This paper describes the genetic structure of the Equine TLR10 gene and its RNA expression in a range of horse tissues. It describes the phylogenetic analysis of the Equine TLR1,6,10,2 annotations in the horse genome, firmly identifying them in their corresponding gene clades compared to other species and firmly placing the horse gene with other TLR10 genes from odd-toed ungulates. Additional 3’ transcript extensions to that annotated for TLR10 in the horse genome have been identified by analysis of RNAseq data. RNA expression of the equine TLR10 gene was highest in peripheral blood mononucleocytes and lymphoid tissue (lymph nodes and spleen), however some expression was detected in all tissues tested (jejunum, caudal mesenteric lymph nodes, bronchial lymph node, spleen, lung, colon, kidney and liver). Additional data on RNAseq expression of all equine TLR genes (1–4 and 6–10) demonstrate higher expression of TLR4 than other equine TLRs in all tissues. Conclusion The equine TLR10 gene displays significant homology to other mammalian TLR10 genes and could be reasonably assumed to have similar fuctions. Its RNA level expression is higher in resting state PBMCs in horses than in other tissues. Electronic supplementary material The online version of this article (doi:10.1186/s13104-016-2161-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rachael E Tarlinton
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| | - Lauren Alder
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Joanna Moreton
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.,Advanced Data Analysis Centre, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Grazieli Maboni
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Richard D Emes
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.,Advanced Data Analysis Centre, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Sabine Tötemeyer
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| |
Collapse
|
4
|
RNA sequencing as a powerful tool in searching for genes influencing health and performance traits of horses. J Appl Genet 2015; 57:199-206. [PMID: 26446669 DOI: 10.1007/s13353-015-0320-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/19/2015] [Accepted: 09/22/2015] [Indexed: 12/31/2022]
Abstract
RNA sequencing (RNA-seq) by next-generation technology is a powerful tool which creates new possibilities in whole-transcriptome analysis. In recent years, with the use of the RNA-seq method, several studies expanded transcriptional gene profiles to understand interactions between genotype and phenotype, supremely contributing to the field of equine biology. To date, in horses, massive parallel sequencing of cDNA has been successfully used to identify and quantify mRNA levels in several normal tissues, as well as to annotate genes. Moreover, the RNA-seq method has been applied to identify the genetic basis of several diseases or to investigate organism adaptation processes to the training conditions. The use of the RNA-seq approach has also confirmed that horses can be useful as a large animal model for human disease, especially in the field of immune response. The presented review summarizes the achievements of profiling gene expression in horses (Equus caballus).
Collapse
|
5
|
McQueen CM, Dindot SV, Foster MJ, Cohen ND. Genetic Susceptibility to Rhodococcus equi. J Vet Intern Med 2015; 29:1648-59. [PMID: 26340305 PMCID: PMC4895676 DOI: 10.1111/jvim.13616] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/29/2015] [Accepted: 08/10/2015] [Indexed: 02/02/2023] Open
Abstract
Rhodococcus equi pneumonia is a major cause of morbidity and mortality in neonatal foals. Much effort has been made to identify preventative measures and new treatments for R. equi with limited success. With a growing focus in the medical community on understanding the genetic basis of disease susceptibility, investigators have begun to evaluate the interaction of the genetics of the foal with R. equi. This review describes past efforts to understand the genetic basis underlying R. equi susceptibility and tolerance. It also highlights the genetic technology available to study horses and describes the use of this technology in investigating R. equi. This review provides readers with a foundational understanding of candidate gene approaches, single nucleotide polymorphism‐based, and copy number variant‐based genome‐wide association studies, and next generation sequencing (both DNA and RNA).
Collapse
Affiliation(s)
- C M McQueen
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX
| | - S V Dindot
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX
| | - M J Foster
- Medical Sciences Library, Texas A&M University, College Station, TX
| | - N D Cohen
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX
| |
Collapse
|
6
|
Pacholewska A, Drögemüller M, Klukowska-Rötzler J, Lanz S, Hamza E, Dermitzakis ET, Marti E, Gerber V, Leeb T, Jagannathan V. The transcriptome of equine peripheral blood mononuclear cells. PLoS One 2015; 10:e0122011. [PMID: 25790166 PMCID: PMC4366165 DOI: 10.1371/journal.pone.0122011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 02/06/2015] [Indexed: 11/26/2022] Open
Abstract
Complete transcriptomic data at high resolution are available only for a few model organisms with medical importance. The gene structures of non-model organisms are mostly computationally predicted based on comparative genomics with other species. As a result, more than half of the horse gene models are known only by projection. Experimental data supporting these gene models are scarce. Moreover, most of the annotated equine genes are single-transcript genes. Utilizing RNA sequencing (RNA-seq) the experimental validation of predicted transcriptomes has become accessible at reasonable costs. To improve the horse genome annotation we performed RNA-seq on 561 samples of peripheral blood mononuclear cells (PBMCs) derived from 85 Warmblood horses. The mapped sequencing reads were used to build a new transcriptome assembly. The new assembly revealed many alternative isoforms associated to known genes or to those predicted by the Ensembl and/or Gnomon pipelines. We also identified 7,531 transcripts not associated with any horse gene annotated in public databases. Of these, 3,280 transcripts did not have a homologous match to any sequence deposited in the NCBI EST database suggesting horse specificity. The unknown transcripts were categorized as coding and noncoding based on predicted coding potential scores. Among them 230 transcripts had high coding potential score, at least 2 exons, and an open reading frame of at least 300 nt. We experimentally validated 9 new equine coding transcripts using RT-PCR and Sanger sequencing. Our results provide valuable detailed information on many transcripts yet to be annotated in the horse genome.
Collapse
Affiliation(s)
- Alicja Pacholewska
- Swiss Institute of Equine Medicine, Vetsuisse Faculty, University of Bern and Agroscope, Bern, Switzerland; Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Jolanta Klukowska-Rötzler
- Swiss Institute of Equine Medicine, Vetsuisse Faculty, University of Bern and Agroscope, Bern, Switzerland; Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Division of Pediatric Hematology/Oncology, Department of Pediatrics, Bern University Hospital, Bern, Switzerland
| | - Simone Lanz
- Swiss Institute of Equine Medicine, Vetsuisse Faculty, University of Bern and Agroscope, Bern, Switzerland
| | - Eman Hamza
- Clinical Immunology Group, Department of Clinical Research and Veterinary Public Health, University of Bern, Bern, Switzerland
| | - Emmanouil T Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland; Institute of Genetics and Genomics in Geneva, Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Eliane Marti
- Clinical Immunology Group, Department of Clinical Research and Veterinary Public Health, University of Bern, Bern, Switzerland
| | - Vincent Gerber
- Swiss Institute of Equine Medicine, Vetsuisse Faculty, University of Bern and Agroscope, Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|