1
|
Admas T, Wudu M, Berhanie H. Barley stripe mosaic virus-induced gene silencing for functional validation of abiotic stress in barley. Funct Integr Genomics 2024; 25:2. [PMID: 39729144 DOI: 10.1007/s10142-024-01508-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/17/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
The barley stripe mosaic virus (BSMV) uses its genomic RNA components (alpha, beta, and gamma) as an efficient method for studying gene functions. It is a newly developed method that utilizes gene transcript suppression to determine the role of plant genes. BSMV derived from virus induced gene silencing (VIGS) is capable of infecting various key farming crops like barley, wheat, rice, corn, and oats. Nevertheless, the growing acceptance and enhancement of BSMV-VIGS will benefit all kinds of plants. Abiotic stresses such as drought and salt are highly affecting plant growth, development, and production. BSMV-induced temporal gene knockdown is performed during particular stressful situations to determine their specific function. The quick physiological and biochemical changes aid in confirming the role of the target genes. VIGS has a significant role to improve crop genetics and breeding, despite having certain restrictions. Thus, exploring the possible solution and addressing these difficulties will enhance the technology in the continuous advancement of plant manufacturing. BSMV-mediated VIGS has become popular in functional genomics; gene function can be determined without permanent transformation. In general, BSMV-mediated VIGS will be very helpful in the ongoing effort to develop resilient crops.
Collapse
Affiliation(s)
- Tayachew Admas
- Research Center of Crop Stresses Resistance Technologies/ MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Yangtze University, Jingzhou, 434025, China.
| | - Maru Wudu
- Department of Biology, Debark University, Debark, Ethiopia
| | - Hailu Berhanie
- Department of Biology, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
2
|
Li X, Su G, Pan C, Zhan J, Wang A, Han Z, Xiao D, He L. TRX h2-PP2AC2 module serves as a convergence node for aluminum stress and leaf senescence signals, regulating cell death via ABA-mediated ROS pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2602-2622. [PMID: 39527458 DOI: 10.1111/tpj.17131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/13/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
ROS/redox signaling plays an important role in the regulation of signal transduction and acclimation pathways activated by multiple abiotic stresses and leaf senescence. However, the regulatory events that produce ROS under different stimuli are far from clear. Here, we report the elucidation of the molecular mechanism of an h type thioredoxin, AhTRX h2, positively regulates Al sensitivity and leaf senescence by promoting ROS. AhTRX h2 transcript levels increased greatly during both natural senescence and Al stress condition in peanut. Ectopic expression of AhTRX h2 in Arabidopsis conferred Al sensitivity as well as premature leaf senescence, manifested by multiple indices, including inhibiting root elongation, severe cell death, and accelerated expression of MC1 and CEX17. AhTRX h2 exhibited similar functions to AtTRX h2, as AhTRX h2 was able to restore the phenotypes of the AtTRX h2 defective mutant (trxh2-4) which showed Al tolerant and late senescence phenotypes. The knock down of AhTRX h2 markedly suppressed Al- and senescence-induced cell death in peanut. AhTRX h2 could recruit catalytic subunit of protein phosphatase 2A (PP2AC2) to form a stable complex. The interaction between AhTRX h2 and AtPP2AC2, as well as AhPP2AC2 and AtTRX h2 was also proved. Overexpression of AhPP2AC2 significantly enhanced Al sensitivity and leaf senescence in Arabidopsis. Protein stability assay revealed that AhTRX h2 was more stable during aging or aluminum stress. Moreover, PP2AC2 could greatly enhance the stability of AhTRX h2 in vivo. Consistent with these observations, overexpression of AhPP2AC2 effectively enhanced AhTRX h2-induced Al sensitivity and precocious leaf senescence. AhTRX h2 and AhPP2AC2 required ABA and ROS in response to cell death under Al stress and senescence, and it was evidence to suggest that ABA acted upstream of ROS in this process. Together, AhTRX h2 and AhPP2AC2 constitute a stable complex that promotes the accumulation of ABA and ROS, effectively regulate cell death. These findings suggest that TRX h2-PP2AC2-mediated pathway may be a widespread mechanism in regulating Al stress and leaf senescence.
Collapse
Affiliation(s)
- Xia Li
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, People's Republic of China
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
| | - Guijun Su
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, People's Republic of China
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
| | - Chunliu Pan
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
| | - Jie Zhan
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, People's Republic of China
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China
| | - Aiqin Wang
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, People's Republic of China
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China
| | - Zhuqiang Han
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530004, China
| | - Dong Xiao
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, People's Republic of China
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China
| | - Longfei He
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, People's Republic of China
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China
- Agricultural and Animal Husbandry Industry Development Research Institute, Guangxi University, Nanning, 530004, China
| |
Collapse
|
3
|
Liu Y, Tang X, Deng A, Li H, Xiao Y, Zhao W, Xiang L, Liu Y, Yao Z, Zeng X, Du Z, Huang R, Yin H, Huang K. Characterization and phylogenetic analysis of the chloroplast genome of Solanum pseudocapsicum (Solanaceae). Mitochondrial DNA B Resour 2024; 9:1285-1290. [PMID: 39359382 PMCID: PMC11443543 DOI: 10.1080/23802359.2024.2410442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
Solanum pseudocapsicum Linnaeus 1753, a popular indoor potted plant known for its ornamental fruits, had its chloroplast genome sequenced in this study to determine its phylogenetic relationship with other related species and to construct a phylogenetic analysis tree. The research findings are as follows: 1. The chloroplast genome of S. pseudocapsicum comprises a large single-copy (LSC) region of 86,260 base pairs, a small single-copy (SSC) region of 18,325 base pairs, and two inverted repeat (IR) regions, each measuring 25,390 base pairs in length. 2. The G + C content of the entire chloroplast genome is 37.59%, with the highest G + C content found in the IR regions, reaching 43.03%; followed by the LSC region, which has a G + C content of 35.68%; and the lowest in the SSC region, with a G + C content of 31.53%. 3. The genome contains 127 genes, including 82 protein-coding genes, 37 tRNA genes, and 8 rRNA genes, with 18 genes duplicated in the IR regions. 4. Phylogenetic analysis revealed that S. pseudocapsicum, Solanum betaceum, Solanum laciniatum, and Solanum nitidum are genetically closely related and are located on the same branch of the phylogenetic tree, indicating a close relationship among them. This study provides a foundation for the identification, classification, and exploration of genetic diversity within the Solanum genus.
Collapse
Affiliation(s)
- Yongle Liu
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Xuan Tang
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Aihua Deng
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Huan Li
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Yulong Xiao
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Wenyan Zhao
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Lixuan Xiang
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Yi Liu
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Zui Yao
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Xingyu Zeng
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Zhitian Du
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Rongjie Huang
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Hanbin Yin
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| | - Kerui Huang
- Hunan Provincial Key Laboratory for Molecular Immunity Technology of Aquatic Animal Diseases, College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde, Hunan, China
| |
Collapse
|
4
|
Mardini M, Kazancev M, Ivoilova E, Utkina V, Vlasova A, Demurin Y, Soloviev A, Kirov I. Advancing virus-induced gene silencing in sunflower: key factors of VIGS spreading and a novel simple protocol. PLANT METHODS 2024; 20:122. [PMID: 39135113 PMCID: PMC11318282 DOI: 10.1186/s13007-024-01241-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/17/2024] [Indexed: 08/16/2024]
Abstract
Virus-Induced Gene Silencing (VIGS) is a versatile tool in plant science, yet its application to non-model species like sunflower demands extensive optimization due to transformation challenges. In this study, we aimed to elucidate the factors that significantly affect the efficiency of Agrobacterium-VIGS in sunflowers. After testing a number of approaches, we concluded that the seed vacuum technique followed by 6 h of co-cultivation produced the most efficient VIGS results. Genotype-dependency analysis revealed varying infection percentages (62-91%) and silencing symptom spreading in different sunflower genotypes. Additionally, we explored the mobility of tobacco rattle virus (TRV) and phenotypic silencing manifestation (photo-bleaching) across different tissues and regions of VIGS-infected sunflower plants. We showed the presence of TRV is not necessarily limited to tissues with observable silencing events. Finally, time-lapse observation demonstrated a more active spreading of the photo-bleached spots in young tissues compared to mature ones. This study not only offers a robust VIGS protocol for sunflowers but also provides valuable insights into genotype-dependent responses and the dynamic nature of silencing events, shedding light on TRV mobility across different plant tissues.
Collapse
Affiliation(s)
- Majd Mardini
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550, Moscow, Russia
| | - Mikhail Kazancev
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550, Moscow, Russia
- Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russia
| | - Elina Ivoilova
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550, Moscow, Russia
| | - Victoria Utkina
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550, Moscow, Russia
| | - Anastasia Vlasova
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550, Moscow, Russia
- Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russia
| | - Yakov Demurin
- Pustovoit All-Russia Research Institute of Oilseed Crops, Filatova St. 17, 350038, Krasnodar, Russia
| | - Alexander Soloviev
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550, Moscow, Russia
- All-Russia Center for Plant Quarantine, 140150, Ramenski, Russia
| | - Ilya Kirov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Str. 42, 127550, Moscow, Russia.
- Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russia.
| |
Collapse
|
5
|
Cheng G, Shu X, Wang Z, Wang N, Zhang F. Establishing a Virus-Induced Gene Silencing System in Lycoris chinensis. PLANTS (BASEL, SWITZERLAND) 2023; 12:2458. [PMID: 37447019 DOI: 10.3390/plants12132458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023]
Abstract
Lycoris is an important plant with both medicinal and ornamental values. However, it does not have an efficient genetic transformation system, which makes it difficult to study gene function of the genus. Virus-induced gene silencing (VIGS) is an effective technique for studying gene functions in plants. In this study, we develop an efficient virus-induced gene-silencing (VIGS) system using the leaf tip needle injection method. The widely used TRV vector is constructed, and the Cloroplastos Alterados 1 (CLA1) and Phytoene Desaturase (PDS) genes are selected as visual indicators in the VIGS system. As a result, it is observed that leaves infected with TRV-LcCLA1 and TRV-LcPDS both show a yellowing phenotype (loss of green), and the chlorosis range of TRV-LcCLA1 was larger and deeper than that of TRV-LcPDS. qRT-PCR results show that the expression levels of LcCLA1 and LcPDS are significantly reduced, and the silencing efficiency of LcCLA1 is higher than that of LcPDS. These results indicate that the VIGS system of L. chinensis was preliminarily established, and LcCLA1 is more suitable as a gene-silencing indicator. For the monocotyledonous plant leaves with a waxy surface, the leaf tip injection method greatly improves the infiltration efficiency. The newly established VIGS system will contribute to gene functional research in Lycoris species.
Collapse
Affiliation(s)
- Guanghao Cheng
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China
| | - Xiaochun Shu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China
| | - Zhong Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China
| | - Ning Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China
| | - Fengjiao Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
- Nanjing Botanical Garden Mem. Sun Yat-Sen, Nanjing 210014, China
| |
Collapse
|
6
|
Niu J, Chen Q, Lu X, Wang X, Tang Z, Liu Q, Lei F, Xu X. Fine mapping and identifying candidate gene of Y underlying yellow peel in Cucurbita pepo. FRONTIERS IN PLANT SCIENCE 2023; 14:1159937. [PMID: 37152148 PMCID: PMC10160447 DOI: 10.3389/fpls.2023.1159937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023]
Abstract
As a conspicuous trait, peel color is one of the most important characteristics that affects commodity quality and consumer preferences. The locus Y underlying yellow peel in Cucurbita pepo (zucchini) was first reported in 1922; however, its molecular mechanism is still unknown. In this study, a genetic analysis revealed that yellow peel is controlled by a single dominant genetic factor. Furthermore, Y was mapped in a ~170 kb region on chromosome 10 by bulked segregated analysis (BSA) and fine mapping in F2 and BC1 segregating populations. The candidate region harbors fifteen annotated genes, among which Cp4.1LG10g11560 (CpCHLH) is regarded as a promising candidate gene. CpCHLH encodes a magnesium chelatase H subunit involved in chlorophyll biosynthesis, and its mutation can result in a reduction in chlorophyll content and yellow phenotype. Interestingly, a large fragment (~15 kb) duplication containing incomplete CpCHLH was inserted in the candidate interval, resulting in two reformed CpCHLH proteins in the yellow parental line. It is most likely that the reformed CpCHLH proteins act as a malfunctional competitor of the normal CpCHLH protein to interrupt the formation of chlorophyll. Overall, the isolation of Y will shed light on the molecular mechanism of the peel color regulation of zucchini and lay a foundation for breeding.
Collapse
Affiliation(s)
- Jianqing Niu
- Hainan Yazhou Bay Seed Lab, Sanya, Hainan, China
| | - Qiong Chen
- Hainan Yazhou Bay Seed Lab, Sanya, Hainan, China
| | - Xiaonan Lu
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | | | - Zhongli Tang
- College of Horticulture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Qinghua Liu
- Cotton Research Institute, Shanxi Agricultural University, Yuncheng, Shanxi, China
| | - Fengjin Lei
- Cotton Research Institute, Shanxi Agricultural University, Yuncheng, Shanxi, China
- *Correspondence: Fengjin Lei, ; Xiaoyong Xu,
| | - Xiaoyong Xu
- Hainan Yazhou Bay Seed Lab, Sanya, Hainan, China
- *Correspondence: Fengjin Lei, ; Xiaoyong Xu,
| |
Collapse
|
7
|
Li Y, Wang X, Zhang Q, Shen Y, Wang J, Qi S, Zhao P, Muhammad T, Islam MM, Zhan X, Liang Y. A mutation in SlCHLH encoding a magnesium chelatase H subunit is involved in the formation of yellow stigma in tomato (Solanum lycopersicum L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111466. [PMID: 36174799 DOI: 10.1016/j.plantsci.2022.111466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Chlorophylls are ubiquitous pigments responsible for the green color in plants. Changes in the chlorophyll content have a significant impact on photosynthesis, plant growth and development. In this study, we used a yellow stigma mutant (ys) generated from a green stigma tomato WT by using ethylmethylsulfone (EMS)-induced mutagenesis. Compared with WT, the stigma of ys shows low chlorophyll content and impaired chloroplast ultrastructure. Through map-based cloning, the ys gene is localized to a 100 kb region on chromosome 4 between dCAPS596 and dCAPS606. Gene expression analysis and nonsynonymous SNP determination identified the Solyc04g015750, as the potential candidate gene, which encodes a magnesium chelatase H subunit (CHLH). In ys mutant, a single base C to T substitution in the SlCHLH gene results in the conversion of Serine into Leucine (Ser92Leu) at the N-terminal region. The functional complementation test shows that the SlCHLH from WT can rescue the green stigma phenotype of ys. In contrast, knockdown of SlCHLH in green stigma tomato AC, observed the yellow stigma phenotype at the stigma development stage. Overexpression of the mutant gene Slys in green stigma tomato AC results in the light green stigma. These results indicate that the mutation of the N-terminal S92 to Leu in SlCHLH is the main reason for the formation of the yellow stigma phenotype. Characterization of the ys mutant enriches the current knowledge of the tomato chlorophyll mutant library and provides a novel and effective tool for understanding the function of CHLH in tomato.
Collapse
Affiliation(s)
- Yushun Li
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China; State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China.
| | - Xinyu Wang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China; State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China.
| | - Qinghua Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China; State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China
| | - Yuanbo Shen
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China; State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China.
| | - Jin Wang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China; State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China.
| | - Shiming Qi
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China; State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China.
| | - Pan Zhao
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China; State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China.
| | - Tayeb Muhammad
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China; State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China; Directorate of Agriculture Extension, Merged Areas, Peshawar 25000, Khyber Pakhtunkhwa, Pakistan.
| | - Md Monirul Islam
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China; State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China.
| | - Xiangqiang Zhan
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China.
| | - Yan Liang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China; State Agriculture Ministry Laboratory of Northwest Horticultural Plant Germplasm Resources & Genetic Improvement, Northwest A&F University, Shaanxi 712100, China.
| |
Collapse
|
8
|
Palmer L, Chuang L, Siegmund M, Kunert M, Yamamoto K, Sonawane P, O'Connor SE. In vivo characterization of key iridoid biosynthesis pathway genes in catnip (Nepeta cataria). PLANTA 2022; 256:99. [PMID: 36222913 PMCID: PMC9556426 DOI: 10.1007/s00425-022-04012-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Using virus-induced gene silencing, we demonstrated that the enzymes GES, ISY, and MLPL are responsible for nepetalactone biosynthesis in Nepeta cataria. Nepetalactone is the main iridoid that is found in the Nepeta genus and is well-known for its psychoactive effect on house cats. Moreover, there is a burgeoning interest into the effect of nepetalactone on insects. Although the enzymes for nepetalactone biosynthesis have been biochemically assayed in vitro, validation of the role that these enzymes have in planta has not been demonstrated. Virus-induced gene silencing (VIGS) is a silencing method that relies on transient transformation and is an approach that has been particularly successful when applied to a variety of non-model plants. Here, we use a recently designed visual-marker dependent VIGS system to demonstrate that the nepetalactone biosynthetic enzymes GES, ISY, and MLPL impact nepetalactone biosynthesis in Nepeta cataria.
Collapse
Affiliation(s)
- Lira Palmer
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07743, Jena, Germany
| | - Ling Chuang
- Institute of Botany, Leibniz University Hannover, 30167, Hannover, Germany
| | - Marlen Siegmund
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07743, Jena, Germany
| | - Maritta Kunert
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07743, Jena, Germany
| | - Kotaro Yamamoto
- School of Science, Association of International Arts and Science, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan
| | - Prashant Sonawane
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07743, Jena, Germany
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, 07743, Jena, Germany.
| |
Collapse
|
9
|
Garg A, Sharma S, Srivastava P, Ghosh S. Application of virus-induced gene silencing in Andrographis paniculata, an economically important medicinal plant. PROTOPLASMA 2021; 258:1155-1162. [PMID: 33704567 DOI: 10.1007/s00709-021-01631-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Kalmegh [Andrographis paniculata (Burm.f.) Wall. ex Nees] is one of the most studied medicinal plants for pharmaceutical properties and phytochemistry. However, functional genomics studies in kalmegh are so far limited due to the unavailability of a robust tool for gene silencing. Here, we tested the application of virus-induced gene silencing (VIGS) in kalmegh using the well-known Tobacco rattle virus (TRV)-based vectors and achieved targeted silencing of phytoene desaturase (ApPDS) which is essential in plants for carotenoid biosynthesis that protects chlorophyll from photooxidation. ApPDS silencing in kalmegh leaves developed a typical photobleaching phenotype. The silencing of ApPDS was confirmed by analysing ApPDS transcript level and determining chlorophyll content in the leaves of VIGS seedlings. The analysis revealed ~30% reduction in chlorophyll content, and 40 to 60% reduction in ApPDS transcript level in the leaves of VIGS seedlings. These findings clearly demonstrated the applicability of VIGS in kalmegh using TRV-based vectors. The VIGS protocol presented in this study might be useful for studying gene function related to medicinal and agricultural traits in kalmegh.
Collapse
Affiliation(s)
- Anchal Garg
- Plant Biotechnology, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
| | - Shubha Sharma
- Plant Biotechnology, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Payal Srivastava
- Plant Biotechnology, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sumit Ghosh
- Plant Biotechnology, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
10
|
Mokgehle TM, Madala N, Gitari WM, Tavengwa NT. Advances in the development of biopolymeric adsorbents for the extraction of metabolites from nutraceuticals with emphasis on Solanaceae and subsequent pharmacological applications. Carbohydr Polym 2021; 264:118049. [PMID: 33910751 DOI: 10.1016/j.carbpol.2021.118049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 12/17/2022]
Abstract
Biopolymers are renowned for their sustainable, biodegradable, biocompatible and most of them have antitoxic characteristics. These versatile naturally derived compounds include proteins, polynucleotides (RNA and DNA) and polysaccharides. Cellulose and chitosan are the most abundant polysaccharides. Proteins and polysaccharides have been applied as emulsifiers. Additional applications of proteins and polysaccharides include cosmetics, food and wastewater treatment for adsorption of dyes and pesticides. However, more interesting applications of biopolymers are emerging, such as use in transport systems for delivery of plant derived nutraceuticals to sites of inflammation, due to its inherent ability to immobilize different biological and chemical systems. This review aims to give a summary on new trends and complement what is already known in the development of polysaccharides and proteins as adsorbents of nutraceutical compounds. The application of polysaccharides/protein containing the adsorbed Solanum derived nutraceutical compounds for drug deliveryis also reviewed.
Collapse
Affiliation(s)
- Tebogo Mphatlalala Mokgehle
- Department of Chemistry, School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| | - Ntakadzeni Madala
- Department of Biochemistry, School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| | - Wilson Mugera Gitari
- Department of Ecology and Resource Management, School of Environmental Sciences, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa
| | - Nikita Tawanda Tavengwa
- Department of Chemistry, School of Mathematical and Natural Sciences, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa.
| |
Collapse
|
11
|
Liu Y, An F, Zhang Y, Fu C, Su Y. First Report of Anthracnose on Jerusalem Cherry Caused by Colletotrichum liaoningense in Shandong, China. PLANT DISEASE 2021; 105:2248. [PMID: 33656362 DOI: 10.1094/pdis-01-21-0124-pdn] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Jerusalem cherry (Solanum pseudocapsicum), which belongs to the genus Solanum and the family Solanaceae, possesses high ornamental value and is widely cultivated as an indoor ornament due to its bright red berries at maturity (Xu et al., 2018). In September 2019, leaf spot was detected on jerusalem cherry plants in Yuxiu Park, Shizhong district, Jinan, Shandong Province. Field surveys were done in a 1/15 ha park. Disease incidence was estimated at approximately 18% across the survey area. Foliar symptoms began as small white spots. As the disease progressed, lesions expanded and merged, and developed into large irregular white spots, with pale grey edge. At last, lesions were densely distributed throughout the leaves. To isolate the pathogen, twenty leaf tissues (5 × 5 mm) were cut from the border between diseased and healthy tissue, surface disinfected in 75% alcohol for 15 s, soaked in 0.1% mercuric chloride for 1 min, washed with sterile distilled water three times, and cultured on potato dextrose agar (PDA) at 25°C. Nineteen fungal isolates were obtained and were single-spored to obtain pure cultures. The colony of LCL7, a representative isolate, on PDA was initially white to orange, but turned black after 3 to 4 days incubation with black conidial masses. Conidia were single-celled, hyaline, straight, cylindrical, apex obtuse, and ranged from 13.4 to 18.3 × 3.2 to 4.9 μm (n = 50) (Diao et al., 2017). To validate the species identification, rDNA internal transcribed spacer (ITS) region (White et al., 1990), and the partial sequences of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), actin (ACT), β-tubulin (TUB2), and chitin synthase (CHS-1) (Damm et al., 2019; He et al., 2019), were amplified and sequenced. The ITS, GAPDH, ACT, TUB2, and CHS-1 sequences of isolate LCL7 were submitted to GenBank (MW221320, MW227217, MW227218, MW227219, and MW266988, respectively). ITS, ACT, TUB2, and CHS-1 BLAST showed 99-100% homology with sequences of Colletotrichum liaoningense (ITS, 100% to MH636504; ACT, 100% to MH622582; TUB2, 99.56% to MH622714, CHS-1, 99.33% to MH622446, respectively), although GAPDH showed 93.98% homology with sequence MH681383 (234/249bp). Neighbor-joining tree based on concatenated sequences of the five genes was constructed using MEGA7.0. The results showed the isolate was closely related to C. liaoningense. Based on morphological and molecular characteristics, the isolate LCL7 was identified as C. liaoningense. Pathogenicity tests were performed by spraying a conidial suspension (1 × 105 conidia/mL) on ten two-year-old healthy jerusalem cherry plants. Ten other plants with sterile water served as controls. All samples were incubated in a growth chamber at 25±2°C and transparent plastic bags to keep relative humidity high for 2 days. All inoculated plants showed symptoms similar to those observed in the field after 21 days, but no disease occurred on control plants. The same fungus was successfully reisolated from inoculated leaves and reidentified based on morphology and molecular characteristics, and the fungus was not isolated from the control plants, thus confirming Koch's postulates. Pathogenicity tests were repeated twice. C. liaoningense can cause anthracnose in chili and mango in China (Diao et al., 2017; Li et al., 2019).To our knowledge, this is the first report of anthracnose on jerusalem cherry caused by C. liaoningense in China, which influences ornamental value and reduces market value. Identification of the causes of the disease will help develop effective strategies for managing this disease.
Collapse
Affiliation(s)
- Yun Liu
- Jinan City Garden and Forestry Greening Bureau, Jinan Forest Farm, Jinan, Shandong Province, China;
| | - Fei An
- Qilu Institute of Technology, Jinan, China;
| | - Yujiao Zhang
- Jinan City Garden and Forestry Greening Bureau, Jinan Forest Farm, Jinan, China;
| | - Cuicui Fu
- Jinan City Garden and Forestry Greening Bureau, Jinan Forest Farm, Jinan, China;
| | - Yuebo Su
- Jinan City Garden and Forestry Greening Bureau, Jinan Forest Farm, Jinan, China;
| |
Collapse
|
12
|
Xiao Z, Xing M, Liu X, Fang Z, Yang L, Zhang Y, Wang Y, Zhuang M, Lv H. An efficient virus-induced gene silencing (VIGS) system for functional genomics in Brassicas using a cabbage leaf curl virus (CaLCuV)-based vector. PLANTA 2020; 252:42. [PMID: 32870402 DOI: 10.1007/s00425-020-03454-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
CaLCuV-based VIGS effectively works in cabbage and contributes to efficient functional genomics research in Brassica crop species. Virus-induced gene silencing (VIGS), a posttranscriptional gene silencing method, is an effective technique for analysing the functions of genes in plants. However, no VIGS vectors have been available for Brassica oleracea until now. Here, tobacco rattle virus (TRV), pTYs and cabbage leaf curl virus (CaLCuV) gene-silencing vectors (PCVA/PCVB) were chosen to improve the VIGS system in cabbage using the phytoene desaturase (PDS) gene as an efficient visual indicator of VIGS. We successfully silenced the expression of PDS and observed photobleaching phenomena in cabbage in response to pTYs and CaLCuV, with the latter being more easy to operate and less expensive. The parameters potentially affecting the silencing efficiency of VIGS by CaLCuV in cabbage, including the targeting fragment strategy, inoculation method and incubation temperature, were then compared. The optimized CaLCuV-based VIGS system involves the following: an approximately 500 bp insert sequence, an Agrobacterium OD600 of 1.0, use of the vacuum osmosis method applied at the bud stage, and an incubation temperature of 22 °C. Using these parameters, we achieved a stable silencing efficiency of 65%. To further test the effectiveness of the system, we selected the Mg-chelatase H subunit (ChlH) gene in cabbage and knocked down its expression, and we observed yellow leaves, as expected. We successfully applied the CaLCuV-based VIGS system to two other representative Brassica crop species, B. rapa and B. nigra, and thus expanded the application scope of this system. Our VIGS system described here will contribute to efficient functional genomics research in Brassica crop species.
Collapse
Affiliation(s)
- Zhiliang Xiao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Miaomiao Xing
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Xing Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Zhiyuan Fang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Limei Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Yangyong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Yong Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Mu Zhuang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China.
| | - Honghao Lv
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China.
| |
Collapse
|
13
|
Li Y, Liu Y, Qi F, Deng C, Lu C, Huang H, Dai S. Establishment of virus-induced gene silencing system and functional analysis of ScbHLH17 in Senecio cruentus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 147:272-279. [PMID: 31891861 DOI: 10.1016/j.plaphy.2019.12.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/12/2019] [Accepted: 12/19/2019] [Indexed: 05/23/2023]
Abstract
Virus-induced gene silencing (VIGS) is a technology for rapid gene functional analysis that depends on the degradation of viral RNA and is part of the natural defense mechanism in plants. Senecio cruentus is an important Compositae ornamental species that is plentiful and available in a variety of colors and has a typical blue variety that is rare in Compositae. These advantages make it a good material for studying the anthocyanin biosynthesis and blue flower formation mechanism. With the development of gene sequencing technology, the functions of many candidate genes that may be involved in anthocyanin biosynthesis in S. cruentus need to be identified. However, a stable and rapid genetic transformation system of S. cruentus is still lacking. Here, we screened two cultivars, 'Venezia' and 'Jseter', selected ScPDS and ScANS as test genes, and investigated the effect of developmental periods, bacterial cell concentrations and infection methods on gene silencing efficiency. The results showed that the silencing efficiency of S. cruentus leaves was low (13%), and it was less affected by the parameters. However, the transcription factor gene ScbHLH17 was still silenced by VIGS, which resulted in the loss of anthocyanin accumulation in leaves, and the expression levels of anthocyanin biosynthesis pathway (ABP) structural genes, including ScCHI, ScDFR3 and ScANS, were decreased significantly. The result proved that ScbHLH17 was an important transcription factor that regulated flower color formation in S. cruentus. In addition, ScANS-silencing phenotypes were observed in S. cruentus capitulum by vacuum-infiltrating S1 stage buds for 10 min after scape injection. In general, the present study provided an important technical support for the study of anthocyanin metabolism pathways in S. cruentus.
Collapse
Affiliation(s)
- Yajun Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, 100083, China; National Engineering Research Center for Floriculture, Beijing, 100083, China; Beijing Laboratory of Urbanand Rural Ecological Environment, Beijing, 100083, China; School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yuting Liu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, 100083, China; National Engineering Research Center for Floriculture, Beijing, 100083, China; Beijing Laboratory of Urbanand Rural Ecological Environment, Beijing, 100083, China; School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Fangting Qi
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, 100083, China; National Engineering Research Center for Floriculture, Beijing, 100083, China; Beijing Laboratory of Urbanand Rural Ecological Environment, Beijing, 100083, China; School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Chengyan Deng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, 100083, China; National Engineering Research Center for Floriculture, Beijing, 100083, China; Beijing Laboratory of Urbanand Rural Ecological Environment, Beijing, 100083, China; School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Chenfei Lu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, 100083, China; National Engineering Research Center for Floriculture, Beijing, 100083, China; Beijing Laboratory of Urbanand Rural Ecological Environment, Beijing, 100083, China; School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - He Huang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, 100083, China; National Engineering Research Center for Floriculture, Beijing, 100083, China; Beijing Laboratory of Urbanand Rural Ecological Environment, Beijing, 100083, China; School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| | - Silan Dai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing, 100083, China; National Engineering Research Center for Floriculture, Beijing, 100083, China; Beijing Laboratory of Urbanand Rural Ecological Environment, Beijing, 100083, China; School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
14
|
Su X, Lu G, Li X, Rehman L, Liu W, Sun G, Guo H, Wang G, Cheng H. Host-Induced Gene Silencing of an Adenylate Kinase Gene Involved in Fungal Energy Metabolism Improves Plant Resistance to Verticillium dahliae. Biomolecules 2020; 10:E127. [PMID: 31940882 PMCID: PMC7023357 DOI: 10.3390/biom10010127] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 12/11/2022] Open
Abstract
Verticillium wilt, caused by the ascomycete fungus Verticillium dahliae (Vd), is a devastating disease of numerous plant species. However, the pathogenicity/virulence-related genes in this fungus, which may be potential targets for improving plant resistance, remain poorly elucidated. For the study of these genes in Vd, we used a well-established host-induced gene silencing (HIGS) approach and identified 16 candidate genes, including a putative adenylate kinase gene (VdAK). Transiently VdAK-silenced plants developed milder wilt symptoms than control plants did. VdAK-knockout mutants were more sensitive to abiotic stresses and had reduced germination and virulence on host plants. Transgenic Nicotiana benthamiana and Arabidopsis thaliana plants that overexpressed VdAK dsRNAs had improved Vd resistance than the wild-type. RT-qPCR results showed that VdAK was also crucial for energy metabolism. Importantly, in an analysis of total small RNAs from Vd strains isolated from the transgenic plants, a small interfering RNA (siRNA) targeting VdAK was identified in transgenic N. benthamiana. Our results demonstrate that HIGS is a promising strategy for efficiently screening pathogenicity/virulence-related genes of Vd and that VdAK is a potential target to control this fungus.
Collapse
Affiliation(s)
- Xiaofeng Su
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.S.); (G.L.); (X.L.); (L.R.); (G.S.); (H.G.)
| | - Guoqing Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.S.); (G.L.); (X.L.); (L.R.); (G.S.); (H.G.)
| | - Xiaokang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.S.); (G.L.); (X.L.); (L.R.); (G.S.); (H.G.)
| | - Latifur Rehman
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.S.); (G.L.); (X.L.); (L.R.); (G.S.); (H.G.)
- Department of Biotechnology, University of Swabi, Khyber Pakhtunkhwa 23561, Pakistan
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Guoqing Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.S.); (G.L.); (X.L.); (L.R.); (G.S.); (H.G.)
| | - Huiming Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.S.); (G.L.); (X.L.); (L.R.); (G.S.); (H.G.)
| | - Guoliang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Department of Plant Pathology, Ohio State University, Columbus, OH 43210, USA
| | - Hongmei Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.S.); (G.L.); (X.L.); (L.R.); (G.S.); (H.G.)
| |
Collapse
|
15
|
Zeng H, Xie Y, Liu G, Wei Y, Hu W, Shi H. Agrobacterium-Mediated Gene Transient Overexpression and Tobacco Rattle Virus (TRV)-Based Gene Silencing in Cassava. Int J Mol Sci 2019; 20:E3976. [PMID: 31443292 PMCID: PMC6719147 DOI: 10.3390/ijms20163976] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 11/24/2022] Open
Abstract
Agrobacterium-mediated transient expression and virus-induced gene silencing (VIGS) are very useful in functional genomics in plants. However, whether these methods are effective in cassava (Manihot esculenta), one of the most important tropical crops, remains elusive. In this study, we used green fluorescent protein (GFP) and β-glucuronidase (GUS) as reporter genes in a transient expression assay. GFP or GUS could be detected in the infiltrated leaves at 2 days postinfiltration (dpi) and were evidenced by visual GFP and GUS assays, reverse-transcription PCR, and Western blot. In addition, phytoene desaturase (PDS) was used to show the silencing effect in a VIGS system. Both Agrobacterium GV3101 and AGL-1 with tobacco rattle virus (TRV)-MePDS-infiltrated distal leaves showed an albino phenotype at 20 dpi; in particular, the AGL-1-infiltrated plants showed an obvious albino area in the most distal leaves. Moreover, the silencing effect was validated by molecular identification. Notably, compared with the obvious cassava mosaic disease symptom infiltrated by African-cassava-mosaic-virus-based VIGS systems in previous studies, TRV-based VIGS-system-infiltrated cassava plants did not show obvious virus-induced disease symptoms, suggesting a significant advantage. Taken together, these methods could promote functional genomics in cassava.
Collapse
Affiliation(s)
- Hongqiu Zeng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yanwei Xie
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Guoyin Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Haikou 571101, China.
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou 570228, China.
| |
Collapse
|
16
|
Matsunaga W, Shimura H, Shirakawa S, Isoda R, Inukai T, Matsumura T, Masuta C. Transcriptional silencing of 35S driven-transgene is differentially determined depending on promoter methylation heterogeneity at specific cytosines in both plus- and minus-sense strands. BMC PLANT BIOLOGY 2019; 19:24. [PMID: 30642254 PMCID: PMC6332629 DOI: 10.1186/s12870-019-1628-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/02/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND De novo DNA methylation triggered by short interfering RNAs is called RNA-directed DNA methylation (RdDM). Transcriptional gene silencing (TGS) through RdDM can be induced using a viral vector. We have previously induced RdDM on the 35S promoter in the green fluorescent protein (GFP)-expressing Nicotiana benthamiana line 16c using the cucumber mosaic virus vector. The GFP fluorescence phenotype segregated into two types, "red" and "orange" in the first self-fertilized (S1) progeny plants by the difference in degree of recovery from TGS on GFP expression. In the second self-fertilized generation (S2 plants), the phenotypes again segregated. Explaining what generates the red and orange types could answer a very important question in epigenetics: How is the robustness of TGS maintained after RdDM induction? RESULTS In bisulfite sequencing analyses, we found a significant difference in the overall promoter hypermethylation pattern between the red and orange types in S1 plants but little difference in S2 plants. Therefore, we assumed that methylation at some specific cytosine residues might be important in determining the two phenotypes. To find the factor that discriminates stable, robust TGS from the unstable TGS with incomplete inheritance, we analyzed the direct effect of methylated cytosine residues on TGS. Because it has not yet been demonstrated that DNA methylation at a few specific cytosine residues on known sequence elements can indeed determine TGS robustness, we newly developed a method by which we can directly evaluate the effect of specific methylation on promoter activity. In this assay, we found that the effects of the specific cytosine methylation on TGS differed between the plus- and minus-strands. CONCLUSIONS We found two distinct phenotypes, the stable and unstable TGS in the progenies of virus-induced TGS plants. Our bisulfite sequencing analyses suggested that methylation at some specific cytosine residues in the 35S promoter played a role in determining whether stable or unstable TGSs are induced. Using the developed method, we inferred that DNA methylation heterogeneity in and between the plus- and minus-strands can differentially determine TGS.
Collapse
Affiliation(s)
- Wataru Matsunaga
- Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, 060-8589 Japan
| | - Hanako Shimura
- Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, 060-8589 Japan
| | - Senri Shirakawa
- Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, 060-8589 Japan
| | - Reika Isoda
- Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, 060-8589 Japan
| | - Tsuyoshi Inukai
- Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, 060-8589 Japan
| | - Takeshi Matsumura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, 062-8517 Japan
| | - Chikara Masuta
- Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, 060-8589 Japan
| |
Collapse
|