1
|
Tamura T, Shimojima Yamamoto K, Tohyama J, Morioka I, Kanno H, Yamamoto T. Reciprocal chromosome translocation t(3;4)(q27;q31.2) with deletion of 3q27 and reduced FBXW7 expression in a patient with developmental delay, hypotonia, and seizures. J Hum Genet 2024; 69:639-644. [PMID: 39123068 DOI: 10.1038/s10038-024-01286-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Reciprocal chromosomal translocation is one of genomic variations. When cytogenetically de novo reciprocal translocations are identified in patients with some clinical manifestations, the genes in the breakpoints are considered to be related to the clinical features. In this study, we encountered a patient with severe developmental delay, intractable epilepsy, growth failure, distinctive features, and skeletal manifestations. Conventional karyotyping revealed a de novo translocation described as 46,XY,t(3;4)(q27;q31.2). Chromosomal microarray testing detected a 1.25-Mb microdeletion at 3q27.3q28. Although the skeletal manifestations may have been affected by this deletion, the neurological features of this patient were severe and could not be fully explained by this deletion. Since no genomic copy number aberration was detected on chromosome 4, long-read whole-genome sequencing analysis was performed and a precise breakpoint was confirmed. A 460-bp deletion was detected between the two breakpoints; however, no gene was disrupted. FBXW7, the gene responsible for developmental delay, hypotonia, and impaired language, is in the 0.5-Mb telomeric region. Most of the patient's clinical features were considered consistent with symptoms of FBXW7-related disorders, but were more severe. FBXW7 expression in the immortalized lymphoblasts of the patient was reduced compared to that in controls. Based on these findings, we suspect that FBXW7 is affected by downstream position effects of chromosomal translocations. The severe neurological features of the patient may have been affected not only by the 3q27-q28 deletion but also by impaired expression of FBXW7 derived from the breakage of chromosome 4.
Collapse
Affiliation(s)
- Takeaki Tamura
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
- Division of Gene Medicine, Graduate School of Medical Science, Tokyo Women's Medical University, Tokyo, Japan
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan
| | - Keiko Shimojima Yamamoto
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Jun Tohyama
- Department of Child Neurology, National Hospital Organization Nishiniigata Chuo Hospital, Niigata, Japan
| | - Ichiro Morioka
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Hitoshi Kanno
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshiyuki Yamamoto
- Division of Gene Medicine, Graduate School of Medical Science, Tokyo Women's Medical University, Tokyo, Japan.
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan.
| |
Collapse
|
2
|
Shimojima Yamamoto K, Shimomura R, Shoji H, Yamamoto T. Glass syndrome derived from chromosomal breakage downstream region of SATB2. Brain Dev 2024; 46:281-285. [PMID: 38972777 DOI: 10.1016/j.braindev.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/16/2024] [Accepted: 06/20/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND Glass syndrome, derived from chromosomal 2q33.1 microdeletions, manifests with intellectual disability, microcephaly, epilepsy, and distinctive features, including micrognathia, down-slanting palpebral fissures, cleft palate, and crowded teeth. Recently, SATB2 located within the deletion region, was identified as the causative gene responsible for Glass syndrome. Numerous disease-causing variants within the SATB2 coding region have been reported. OBJECTIVE Given the presentation of intellectual disability and multiple congenital anomalies in a patient with a de novo reciprocal translocation between chromosomes 1 and 2, disruption of the causative gene(s) was suspected. This study sought to identify the causative gene in the patient. METHODS Long-read whole-genome sequencing was performed, and the expression level of the candidate gene was analyzed. RESULTS The detection of breakpoints was successful. While the breakpoint on chromosome 1 disrupted RNF220, it was not deemed to be a genetic cause. Conversely, SATB2 is located in the approximately 100-kb telomeric region of the breakpoint on chromosome 2. The patient's clinical features resembled those of previously reported cases of Glass syndrome, despite the lack of confirmed reduced SATB2 expression. CONCLUSION The patient was diagnosed with Glass syndrome due to the similarity in clinical features. This led us to hypothesize that disruption in the downstream region of SATB2 could result in Glass syndrome. The microhomologies identified in the breakpoint junctions indicate a potential molecular mechanism involving microhomology-mediated break-induced repair mechanism or template switching.
Collapse
Affiliation(s)
- Keiko Shimojima Yamamoto
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan; Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan; Division of Gene Medicine, Graduate School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Rina Shimomura
- Division of Gene Medicine, Graduate School of Medicine, Tokyo Women's Medical University, Tokyo, Japan; Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiromichi Shoji
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshiyuki Yamamoto
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan; Division of Gene Medicine, Graduate School of Medicine, Tokyo Women's Medical University, Tokyo, Japan.
| |
Collapse
|
3
|
Si W, Chen W, Chen B, Zhou Y, Zhang H. Detection value of third-generation sequencing to identify the pathogenic organisms in prosthetic joint infection. Diagn Microbiol Infect Dis 2024; 109:116319. [PMID: 38669776 DOI: 10.1016/j.diagmicrobio.2024.116319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/03/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
To compare the detection value of third-generation sequencing (TGS) with pathogenic microbial culture in prosthetic joint infection (PJI). Arthrocentesis was performed on 29 patients who underwent hip and knee revision surgeries. In the PJI group, TGS detected 85.71 % of positive cases, while pathogenic microbial culture detected only 42.85 %. TGS identified 17 different pathogenic microorganisms, including Staphylococcus epidermidis, Staphylococcus aureus, Streptococcus lactis, and Mycobacterium tuberculosis complex. In the loosening group, TGS was positive in one patient, while microbial culture was negative in all cases. TGS showed higher sensitivity (85.71 % vs. 42.85 %), comparable specificity (93.33 % vs. 100 %), and similar positive predictive value (92.31 % vs. 100 %) compared to culture.However, TGS had a higher negative predictive value (87.5 % vs. 65.22 %).Additionally, TGS provided faster results (mean time 23.8±3.6 h) compared to microbial culture (mean time 108.0±9.4 h).These findings suggest that TGS holds promise for detecting pathogenic microorganisms in PJI and has potential for clinical application.
Collapse
Affiliation(s)
- Wenteng Si
- Zhengzhou Orthopaedic Hospital of Joint Surgery, Zhengzhou 450052, China
| | - Wenzhong Chen
- Zhengzhou Orthopaedic Hospital of Joint Surgery, Zhengzhou 450052, China
| | - Bin Chen
- Zhengzhou Orthopaedic Hospital of Joint Surgery, Zhengzhou 450052, China
| | - Yu Zhou
- Zhengzhou Orthopaedic Hospital of Joint Surgery, Zhengzhou 450052, China
| | - Huaguo Zhang
- Department of Nursing, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China.
| |
Collapse
|
4
|
Tamura T, Shimojima Yamamoto K, Imaizumi T, Yamamoto H, Miyamoto Y, Yagasaki H, Morioka I, Kanno H, Yamamoto T. Breakpoint analysis for cytogenetically balanced translocation revealed unexpected complex structural abnormalities and suggested the position effect for MEF2C. Am J Med Genet A 2023; 191:1632-1638. [PMID: 36916329 DOI: 10.1002/ajmg.a.63182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/27/2023] [Accepted: 03/02/2023] [Indexed: 03/15/2023]
Abstract
Many disease-causing genes have been identified by determining the breakpoints of balanced chromosomal translocations. Recent progress in genomic analysis has accelerated the analysis of chromosomal translocation-breakpoints at the nucleotide level. Using a long-read whole-genome sequence, we analyzed the breakpoints of the cytogenetically balanced chromosomal translocation t(5;15)(q21;26.3), which was confirmed to be of de novo origin, in a patient with a neurodevelopmental disorder. The results showed complex rearrangements with seven fragments consisting of five breakpoint-junctions (BJs). Four of the five BJs showed microhomologies of 1-3-bp, and only one BJ displayed a signature of blunt-end ligation, indicating chromothripsis as the underlying mechanism. Although the BJs did not disrupt any disease-causing gene, the clinical features of the patient were compatible with MEF2C haploinsufficiency syndrome. Complex rearrangements were located approximately 2.5-Mb downstream of MEF2C. Therefore, position effects were considered the mechanism of the occurrence of MEF2C haploinsufficiency syndrome.
Collapse
Affiliation(s)
- Takeaki Tamura
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan.,Division of Gene Medicine, Graduate School of Medical Science, Tokyo Women's Medical University, Tokyo, Japan.,Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan
| | - Keiko Shimojima Yamamoto
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan.,Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Taichi Imaizumi
- Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Hisako Yamamoto
- Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Yusaku Miyamoto
- Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Hiroshi Yagasaki
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Ichiro Morioka
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Hitoshi Kanno
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan.,Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshiyuki Yamamoto
- Division of Gene Medicine, Graduate School of Medical Science, Tokyo Women's Medical University, Tokyo, Japan.,Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
5
|
Amatul-Samahah MA, Mohamad A, Al-saari N, Zamri-Saad M, Azmai MNA, Yusof MT, Ina-Salwany MY, Tanaka M, Mino S, Sawabe T. Draft genome sequence data of Vibrio harveyi VH1 isolated from a diseased tiger grouper, Epinephelus fuscoguttatus, cultured in Malaysia. Data Brief 2022; 44:108533. [PMID: 36042821 PMCID: PMC9420474 DOI: 10.1016/j.dib.2022.108533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
Vibriosis accounts for 66.7% of diseases reported in groupers' cultures and affects almost all stages of growth. The disease could lead up to mortality up to 50% mortality, and it was reported that high stocking density and poor fish handling were among the factors that contributed to the disease dissemination. V. harveyi has been reported to be among the causative agent and has caused acute mortality in cage groupers. In this study, we report the genome of V. harveyi VH1 isolated from a diseased tiger grouper Epinephelus fuscoguttatus, reared in a cage farm located in the coastal area of Langkawi.
Collapse
|
6
|
Sheka D, Alabi N, Gordon PMK. Oxford nanopore sequencing in clinical microbiology and infection diagnostics. Brief Bioinform 2021; 22:6109725. [PMID: 33483726 DOI: 10.1093/bib/bbaa403] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/26/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022] Open
Abstract
Extended turnaround times and large economic costs hinder the usage of currently applied screening methods for bacterial pathogen identification (ID) and antimicrobial susceptibility testing. This review provides an overview of current detection methods and their usage in a clinical setting. Issues of timeliness and cost could soon be circumvented, however, with the emergence of detection methods involving single molecule sequencing technology. In the context of bringing diagnostics closer to the point of care, we examine the current state of Oxford Nanopore Technologies (ONT) products and their interaction with third-party software/databases to assess their capabilities for ID and antimicrobial resistance (AMR) prediction. We outline and discuss a potential diagnostic workflow, enumerating (1) rapid sample prep kits, (2) ONT hardware/software and (3) third-party software and databases to improve the cost, accuracy and turnaround times for ID and AMR. Multiple studies across a range of infection types support that the speed and accuracy of ONT sequencing is now such that established ID and AMR prediction tools can be used on its outputs, and so it can be harnessed for near real time, close to the point-of-care diagnostics in common clinical circumstances.
Collapse
Affiliation(s)
- Dropen Sheka
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nikolay Alabi
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Paul M K Gordon
- Cumming School of Medicine Centre for Health Genomics and Informatics, University of Calgary
| |
Collapse
|
7
|
Yanagishita T, Imaizumi T, Yamamoto-Shimojima K, Yano T, Okamoto N, Nagata S, Yamamoto T. Breakpoint junction analysis for complex genomic rearrangements with the caldera volcano-like pattern. Hum Mutat 2020; 41:2119-2127. [PMID: 32906213 DOI: 10.1002/humu.24108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/25/2020] [Accepted: 09/06/2020] [Indexed: 12/16/2022]
Abstract
Chromosomal triplications can be classified into recurrent and nonrecurrent triplications. Most of the nonrecurrent triplications are embedded in duplicated segments, and duplication-inverted triplication-duplication (DUP-TRP/INV-DUP) has been established as one of the mechanisms of triplication. This study aimed to reveal the underlying mechanism of the TRP-DUP-TRP pattern of chromosomal aberrations, in which the appearance of moving averages obtained through array-based comparative genomic hybridization analysis is similar to the shadows of the caldera volcano-like pattern, which were first identified in two patients with neurodevelopmental disabilities. For this purpose, whole-genome sequencing using long-read Nanopore sequencing was carried out to confirm breakpoint junctions. Custom array analysis and Sanger sequencing were also used to detect all breakpoint junctions. As a result, the TRP-DUP-TRP pattern consisted of only two patterns of breakpoint junctions in both patients. In patient 1, microhomologies were identified in breakpoint junctions. In patient 2, more complex architectures with insertional segments were identified. Thus, replication-based mechanisms were considered as a mechanism of the TRP-DUP-TRP pattern.
Collapse
Affiliation(s)
- Tomoe Yanagishita
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan.,Department of Genomic Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Taichi Imaizumi
- Department of Genomic Medicine, Tokyo Women's Medical University, Tokyo, Japan.,Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki, Japan
| | | | - Tamami Yano
- Department of Pediatrics, Akita University, Akita, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Satoru Nagata
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshiyuki Yamamoto
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan.,Department of Genomic Medicine, Tokyo Women's Medical University, Tokyo, Japan.,Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki, Japan.,Institute for Integrated Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
8
|
Imaizumi T, Yamamoto-Shimojima K, Yanagishita T, Ondo Y, Nishi E, Okamoto N, Yamamoto T. Complex chromosomal rearrangements of human chromosome 21 in a patient manifesting clinical features partially overlapped with that of Down syndrome. Hum Genet 2020; 139:1555-1563. [PMID: 32535809 DOI: 10.1007/s00439-020-02196-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/06/2020] [Indexed: 01/16/2023]
Abstract
The chromosomal region critical in Down syndrome has long been analyzed through genotype-phenotype correlation studies using data from many patients with partial trisomy 21. Owing to that, a relatively small region of human chromosome 21 (35.9 ~ 38.0 Mb) has been considered as Down syndrome critical region (DSCR). In this study, microarray-based comparative genomic hybridization analysis identified complex rearrangements of chromosome 21 in a patient manifesting clinical features partially overlapped with that of Down syndrome. Although the patient did not show up-slanting palpebral fissures and single transverse palmar creases, other symptoms were consistent with Down syndrome. Rearrangements were analyzed by whole-genome sequencing using Nanopore long-read sequencing. The analysis revealed that chromosome 21 was fragmented into seven segments and reassembled by six connected points. Among 12 breakpoints, 5 are located within the short region and overlapped with repeated segments. The rearrangement resulted in a maximum gain of five copies, but no region showed loss of genomic copy numbers. Breakpoint-junctions showed no homologous region. Based on these findings, chromoanasynthesis was considered as the mechanism. Although the distal 21q22.13 region was not included in the aberrant regions, some of the genes located on the duplicated regions, SOD1, SON, ITSN1, RCAN1, and RUNX1, were considered as possible candidate genes for clinical features of the patient. We discussed the critical region for Down syndrome, with the literature review.
Collapse
Affiliation(s)
- Taichi Imaizumi
- Institute of Medical Genetics, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ward, Tokyo, 162-8666, Japan
- Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Keiko Yamamoto-Shimojima
- Institute of Medical Genetics, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ward, Tokyo, 162-8666, Japan
- Japan Society for the Promotion of Science (RPD), Tokyo, Japan
- Department of Transfusion Medicine and Cell Processing, Tokyo Women's Medical University, Tokyo, Japan
- Tokyo Women's Medical University Institute for Integrated Medical Sciences, Tokyo, Japan
| | - Tomoe Yanagishita
- Institute of Medical Genetics, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ward, Tokyo, 162-8666, Japan
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan
| | - Yumiko Ondo
- Institute of Medical Genetics, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ward, Tokyo, 162-8666, Japan
| | - Eriko Nishi
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Toshiyuki Yamamoto
- Institute of Medical Genetics, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ward, Tokyo, 162-8666, Japan.
- Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki, Japan.
- Tokyo Women's Medical University Institute for Integrated Medical Sciences, Tokyo, Japan.
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan.
| |
Collapse
|
9
|
Tanaka M, Kumakura D, Mino S, Doi H, Ogura Y, Hayashi T, Yumoto I, Cai M, Zhou YG, Gomez-Gil B, Araki T, Sawabe T. Genomic characterization of closely related species in the Rumoiensis clade infers ecogenomic signatures to non-marine environments. Environ Microbiol 2020; 22:3205-3217. [PMID: 32383332 DOI: 10.1111/1462-2920.15062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/21/2020] [Accepted: 05/03/2020] [Indexed: 11/28/2022]
Abstract
Members of the family Vibrionaceae are generally found in marine and brackish environments, playing important roles in nutrient cycling. The Rumoiensis clade is an unconventional group in the genus Vibrio, currently comprising six species from different origins including two species isolated from non-marine environments. In this study, we performed comparative genome analysis of all six species in the clade using their complete genome sequences. We found that two non-marine species, Vibrio casei and Vibrio gangliei, lacked the genes responsible for algal polysaccharide degradation, while a number of glycoside hydrolase genes were enriched in these two species. Expansion of insertion sequences was observed in V. casei and Vibrio rumoiensis, which suggests ongoing genomic changes associated with niche adaptations. The genes responsible for the metabolism of glucosylglycerate, a compound known to play a role as compatible solutes under nitrogen limitation, were conserved across the clade. These characteristics, along with genes encoding species-specific functions, may reflect the habit expansion which has led to the current distribution of Rumoiensis clade species. Genome analysis of all species in a single clade give us valuable insights into the genomic background of the Rumoiensis clade species and emphasize the genomic diversity and versatility of Vibrionaceae.
Collapse
Affiliation(s)
- Mami Tanaka
- Laboratory of Microbiology, Faculty of Fisheries, Hokkaido University, Hakodate, Japan
| | - Daiki Kumakura
- Laboratory of Microbiology, Faculty of Fisheries, Hokkaido University, Hakodate, Japan
| | - Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries, Hokkaido University, Hakodate, Japan
| | - Hidetaka Doi
- R&D Strategic Group, R&D Planning Department, Ajinomoto Co., Inc., Tokyo, Japan
| | - Yoshitoshi Ogura
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Isao Yumoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Sapporo, Japan
| | - Man Cai
- China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yu-Guang Zhou
- China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bruno Gomez-Gil
- CIAD, AC Mazatlan Unit for Aquaculture and Environmental Management, Mazatlán, Sinaloa, AP 711, Mexico
| | - Toshiyoshi Araki
- Iga Community-based Research Institute, Mie University, Iga, Japan
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries, Hokkaido University, Hakodate, Japan
| |
Collapse
|
10
|
Analyses of breakpoint junctions of complex genomic rearrangements comprising multiple consecutive microdeletions by nanopore sequencing. J Hum Genet 2020; 65:735-741. [PMID: 32355308 DOI: 10.1038/s10038-020-0762-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 04/01/2020] [Accepted: 04/04/2020] [Indexed: 12/19/2022]
Abstract
The widespread use of genomic copy number analysis has revealed many previously unknown genomic structural variations, including some which are more complex. In this study, three consecutive microdeletions were identified in the same chromosome by microarray-based comparative genomic hybridization (aCGH) analysis for a patient with a neurodevelopmental disorder. Subsequent fluorescence in situ hybridization (FISH) analyses unexpectedly suggested complicated translocations and inversions. For better understanding of the mechanism, breakpoint junctions were analyzed by nanopore sequencing, as a new long-read whole-genome sequencing (WGS) tool. The results revealed a new chromosomal disruption, giving rise to four junctions in chromosome 7. According the sequencing results of breakpoint junctions, all junctions were considered as the consequence of multiple double-strand breaks and the reassembly of DNA fragments by nonhomologous end-joining, indicating chromothripsis. KMT2E, located within the deletion region, was considered as the gene responsible for the clinical features of the patient. Combinatory usage of aCGH and FISH analyses would be recommended for interpretation of structural variations analyzed through WGS.
Collapse
|
11
|
Imai K, Nemoto R, Kodana M, Tarumoto N, Sakai J, Kawamura T, Ikebuchi K, Mitsutake K, Murakami T, Maesaki S, Fujiwara T, Hayakawa S, Hoshino T, Seki M, Maeda T. Rapid and Accurate Species Identification of Mitis Group Streptococci Using the MinION Nanopore Sequencer. Front Cell Infect Microbiol 2020; 10:11. [PMID: 32083020 PMCID: PMC7002467 DOI: 10.3389/fcimb.2020.00011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/10/2020] [Indexed: 11/13/2022] Open
Abstract
Differentiation between mitis group streptococci (MGS) bacteria in routine laboratory tests has become important for obtaining accurate epidemiological information on the characteristics of MGS and understanding their clinical significance. The most reliable method of MGS species identification is multilocus sequence analysis (MLSA) with seven house-keeping genes; however, because this method is time-consuming, it is deemed unsuitable for use in most clinical laboratories. In this study, we established a scheme for identifying 12 species of MGS (S. pneumoniae, S. pseudopneumoniae, S. mitis, S. oralis, S. peroris, S. infantis, S. australis, S. parasanguinis, S. sinensis, S. sanguinis, S. gordonii, and S. cristatus) using the MinION nanopore sequencer (Oxford Nanopore Technologies, Oxford, UK) with the taxonomic aligner "What's in My Pot?" (WIMP; Oxford Nanopore's cloud-based analysis platform) and Kraken2 pipeline with the custom database adjusted for MGS species identification. The identities of the species in reference genomes (n = 514), clinical isolates (n = 31), and reference strains (n = 4) were confirmed via MLSA. The nanopore simulation reads were generated from reference genomes, and the optimal cut-off values for MGS species identification were determined. For 31 clinical isolates (S. pneumoniae = 8, S. mitis = 17 and S. oralis = 6) and 4 reference strains (S. pneumoniae = 1, S. mitis = 1, S. oralis = 1, and S. pseudopneumoniae = 1), a sequence library was constructed via a Rapid Barcoding Sequencing Kit for multiplex and real-time MinION sequencing. The optimal cut-off values for the identification of MGS species for analysis by WIMP and Kraken2 pipeline were determined. The workflow using Kraken2 pipeline with a custom database identified all 12 species of MGS, and WIMP identified 8 MGS bacteria except S. infantis, S. australis, S. peroris, and S. sinensis. The results obtained by MinION with WIMP and Kraken2 pipeline were consistent with the MGS species identified by MLSA analysis. The practical advantage of whole genome analysis using the MinION nanopore sequencer is that it can aid in MGS surveillance. We concluded that MinION sequencing with the taxonomic aligner enables accurate MGS species identification and could contribute to further epidemiological surveys.
Collapse
Affiliation(s)
- Kazuo Imai
- Department of Infectious Disease and Infection Control, Saitama Medical University, Saitama, Japan
- Center for Clinical Infectious Diseases and Research, Saitama Medical University, Saitama, Japan
| | - Rina Nemoto
- Department of Microbiology, Saitama Medical University, Saitama, Japan
| | - Masahiro Kodana
- Department of Laboratory Medicine, Saitama Medical University, Saitama, Japan
| | - Norihito Tarumoto
- Department of Infectious Disease and Infection Control, Saitama Medical University, Saitama, Japan
- Center for Clinical Infectious Diseases and Research, Saitama Medical University, Saitama, Japan
| | - Jun Sakai
- Department of Infectious Disease and Infection Control, Saitama Medical University, Saitama, Japan
- Center for Clinical Infectious Diseases and Research, Saitama Medical University, Saitama, Japan
| | - Toru Kawamura
- Department of Laboratory Medicine, Saitama Medical University, Saitama, Japan
| | - Kenji Ikebuchi
- Department of Laboratory Medicine, Saitama Medical University, Saitama, Japan
| | - Kotaro Mitsutake
- Department of Infectious Diseases and Infection Control, International Medical Center, Saitama Medical University, Saitama, Japan
| | - Takashi Murakami
- Center for Clinical Infectious Diseases and Research, Saitama Medical University, Saitama, Japan
- Department of Microbiology, Saitama Medical University, Saitama, Japan
| | - Shigefumi Maesaki
- Department of Infectious Disease and Infection Control, Saitama Medical University, Saitama, Japan
- Center for Clinical Infectious Diseases and Research, Saitama Medical University, Saitama, Japan
| | - Taku Fujiwara
- Department of Pediatric Dentistry, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Tomonori Hoshino
- Division of Pediatric Dentistry, Meikai University School of Dentistry, Sakado, Japan
| | - Mitsuko Seki
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
- Division of Pediatric Dentistry, Meikai University School of Dentistry, Sakado, Japan
| | - Takuya Maeda
- Center for Clinical Infectious Diseases and Research, Saitama Medical University, Saitama, Japan
- Department of Laboratory Medicine, Saitama Medical University, Saitama, Japan
| |
Collapse
|