1
|
Burge KY, Georgescu C, Zhong H, Wilson AP, Gunasekaran A, Yu Z, Franca A, Eckert JV, Wren JD, Chaaban H. Spatial transcriptomics delineates potential differences in intestinal phenotypes of cardiac and classical necrotizing enterocolitis. iScience 2025; 28:112166. [PMID: 40201118 PMCID: PMC11978348 DOI: 10.1016/j.isci.2025.112166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/20/2024] [Accepted: 03/03/2025] [Indexed: 04/10/2025] Open
Abstract
Necrotizing enterocolitis (NEC) is a devastating neonatal gastrointestinal disease, often resulting in multi-organ failure and death. While classical NEC is strictly associated with prematurity, cardiac NEC is a subset of the disease occurring in infants with comorbid congenital heart disease. Despite similar symptomatology, the NEC subtypes vary slightly in presentation and may represent etiologically distinct diseases. We compared ileal spatial transcriptomes of patients with cardiac and classical NEC. Epithelial and immune cells cluster well by cell-type segment and NEC subtype. Differences in metabolism and immune cell activation functionally differentiate the cell-type makeup of the NEC subtypes. The classical NEC phenotype is defined by dysbiosis-induced inflammatory signaling and metabolic acidosis, while that of cardiac NEC involves reduced angiogenesis and endoplasmic reticulum stress-induced apoptosis. Despite subtype-associated clinical and demographic variability, spatial transcriptomics has substantiated pathway and network differences within immune and epithelial segments between cardiac and classical NEC.
Collapse
Affiliation(s)
- Kathryn Y. Burge
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Constantin Georgescu
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Hua Zhong
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Adam P. Wilson
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Aarthi Gunasekaran
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zhongxin Yu
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Addison Franca
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jeffrey V. Eckert
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jonathan D. Wren
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Hala Chaaban
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
2
|
Nebangwa DN, Shey RA, Shadrack DM, Shintouo CM, Yaah NE, Yengo BN, Efeti MT, Gwei KY, Fomekong DBA, Nchanji GT, Lemoge AA, Ntie‑Kang F, Ghogomu SM. Predictive immunoinformatics reveal promising safety and anti-onchocerciasis protective immune response profiles to vaccine candidates (Ov-RAL-2 and Ov-103) in anticipation of phase I clinical trials. PLoS One 2024; 19:e0312315. [PMID: 39432476 PMCID: PMC11493244 DOI: 10.1371/journal.pone.0312315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024] Open
Abstract
Onchocerciasis (river blindness) is a debilitating tropical disease that causes significant eye and skin damage, afflicting millions worldwide. As global efforts shift from disease management to elimination, vaccines have become crucial supplementary tools. The Onchocerciasis Vaccine for Africa (TOVA) Initiative was established in 2015, to advance at least one vaccine candidate initially targeting onchocerciasis in infants and children below 5 years of age, through Phase I human trials by 2025. Notably, Ov-RAL-2 and Ov-103 antigens have shown great promise during pre-clinical development, however, the overall success rate of vaccine candidates during clinical development remains relatively low due to certain adverse effects and immunogenic limitations. This study, thus, aimed at predicting the safety and immunogenicity of Ov-RAL-2 and Ov-103 potential onchocerciasis vaccine candidates prior to clinical trials. Advanced molecular simulation models and analytical immunoinformatics algorithms were applied to predict potential adverse side effects and efficacy of these antigens in humans. The analyses revealed that both Ov-RAL-2 and Ov-103 demonstrate favourable safety profiles as toxicogenic and allergenic epitopes were found to be absent within each antigen. Also, both antigens were predicted to harbour substantial numbers of a wide range of distinct epitopes (antibodies, cytokines, and T- Cell epitopes) associated with protective immunity against onchocerciasis. In agreement, virtual vaccination simulation forecasted heightened, but sustained levels of primary and secondary protective immune responses to both vaccine candidates over time. Ov-103 was predicted to be non-camouflageable, as it lacked epitopes identical to protein sequences in the human proteome. Indeed, both antigens were able to bind with high affinity and activate the innate immune TLR4 receptor, implying efficient immune recognition. These findings suggest that Ov-RAL-2 and Ov-103 can induce sufficient protective responses through diverse humoral and cellular mechanisms. Overall, our study provides additional layer of evidence for advancing the clinical development of both vaccine candidates against onchocerciasis.
Collapse
Affiliation(s)
- Derrick Neba Nebangwa
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Robert Adamu Shey
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
- Tropical Disease Interventions, Diagnostics, Vaccines and Therapeutics (TroDDIVaT) Initiative, Buea, Cameroon
| | | | - Cabirou Mounchili Shintouo
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Ntang Emmaculate Yaah
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Bernis Neneyoh Yengo
- Department of Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Mary Teke Efeti
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Ketura Yaje Gwei
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | | | - Gordon Takop Nchanji
- Tropical Disease Interventions, Diagnostics, Vaccines and Therapeutics (TroDDIVaT) Initiative, Buea, Cameroon
- Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Arnaud Azonpi Lemoge
- Ngonpong Therapeutics, Concord Pike, Wilmington, Delaware, United States of America
| | - Fidele Ntie‑Kang
- Center for Drug Discovery, University of Buea, Buea, Cameroon
- Department of Chemistry, University of Buea, Buea, Cameroon
- Institute of Pharmacy, Martin‑Luther University of Halle‑Wittenberg, Halle, Germany
| | - Stephen Mbigha Ghogomu
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| |
Collapse
|
3
|
Vinay K, Kamat D, Narayan R V, Minz RW, Singh J, Bishnoi A, Chatterjee D, Parsad D, Kumaran MS. Major histocompatibility complex (MHC) gene frequency in acquired dermal macular hyperpigmentation: a case control study. Int J Dermatol 2024; 63:773-779. [PMID: 38263574 DOI: 10.1111/ijd.17017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/12/2023] [Accepted: 12/28/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Human leukocyte antigen (HLA) allele frequencies have a known association with the pathogenesis of various autoimmune diseases. METHODS We recruited 31 Indian patients of acquired dermal macular hyperpigmentation (ADMH) and 60 unrelated, age-and-gender-matched healthy controls. After history and clinical examination, 5 ml of blood in EDTA vials was collected. These samples were subjected to DNA extraction and the expression of HLA A, B, C, DR, DQ-A, and DQ-B was studied. RESULTS There was a predominance of females with a gender ratio of 23 : 8 and the most common phototype was Fitzpatrick type IV (83.9%). There was a significant association of HLA A*03:01 (OR: 5.8, CI: 1.7-17.0, P = 0.005), HLA B*07:02 (OR: 5.3, CI: 1.9-14.6, P = 0.003), HLA C*07:02 (OR: 4.3, CI: 1.8-9.6, P = 0.001), HLA DRB1*10:01 (OR: 7.6, CI: 1.7-38.00, P = 0.022), and HLA DRB1*15:02 (OR: 31.0, CI: 4.4-341.8, P < 0.001) with patients compared to controls, whereas HLA DQB*03:01 was less associated with patients compared to controls (OR: 0.2, CI: 0.0-0.6, P = 0.009). CONCLUSION Patients with ADMH are more likely to have the HLA A*03:01, HLA B 07*02, HLA C*07:02, HLA DRB1*10:01, HLA DRB1*15:02 and less likely to have the HLA DQB*03:01 allele. Larger cohort studies may thus be conducted studying these specific alleles.
Collapse
Affiliation(s)
- Keshavamurthy Vinay
- Department of Dermatology, Venereology & Leprology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Divya Kamat
- Department of Dermatology, Venereology & Leprology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Vignesh Narayan R
- Department of Dermatology, Venereology & Leprology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ranjana W Minz
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Jagdeep Singh
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Anuradha Bishnoi
- Department of Dermatology, Venereology & Leprology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Debajyoti Chatterjee
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Davinder Parsad
- Department of Dermatology, Venereology & Leprology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Muthu S Kumaran
- Department of Dermatology, Venereology & Leprology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
4
|
Pardos-Gea J, Martin-Fernandez L, Closa L, Ferrero A, Marzo C, Rubio-Rivas M, Mitjavila F, González-Porras JR, Bastida JM, Mateo J, Carrasco M, Bernardo Á, Astigarraga I, Aguinaco R, Corrales I, Garcia-Martínez I, Vidal F. Key Genes of the Immune System and Predisposition to Acquired Hemophilia A: Evidence from a Spanish Cohort of 49 Patients Using Next-Generation Sequencing. Int J Mol Sci 2023; 24:16372. [PMID: 38003562 PMCID: PMC10671092 DOI: 10.3390/ijms242216372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Acquired hemophilia A (AHA) is a rare bleeding disorder caused by the presence of autoantibodies against factor VIII (FVIII). As with other autoimmune diseases, its etiology is complex and its genetic basis is unknown. The aim of this study was to identify the immunogenetic background that predisposes individuals to AHA. HLA and KIR gene clusters, as well as KLRK1, were sequenced using next-generation sequencing in 49 AHA patients. Associations between candidate genes involved in innate and adaptive immune responses and AHA were addressed by comparing the alleles, genotypes, haplotypes, and gene frequencies in the AHA cohort with those in the donors' samples or Spanish population cohort. Two genes of the HLA cluster, as well as rs1049174 in KLRK1, which tags the natural killer (NK) cytotoxic activity haplotype, were found to be linked to AHA. Specifically, A*03:01 (p = 0.024; odds ratio (OR) = 0.26[0.06-0.85]) and DRB1*13:03 (p = 6.8 × 103, OR = 7.56[1.64-51.40]), as well as rs1049174 (p = 0.012), were significantly associated with AHA. In addition, two AHA patients were found to carry one copy each of the low-frequency allele DQB1*03:09 (nallele = 2, 2.04%), which was completely absent in the donors. To the best of our knowledge, this is the first time that the involvement of these specific alleles in the predisposition to AHA has been proposed. Further molecular and functional studies will be needed to unravel their specific contributions. We believe our findings expand the current knowledge on the genetic factors involved in susceptibility to AHA, which will contribute to improving the diagnosis and prognosis of AHA patients.
Collapse
Affiliation(s)
- Jose Pardos-Gea
- Systemic Autoimmune Diseases Unit, Department of Internal Medicine, Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| | - Laura Martin-Fernandez
- Congenital Coagulopathies Laboratory, Blood and Tissue Bank, 08005 Barcelona, Spain
- Transfusional Medicine Group, Vall d’Hebron Research Institute, Autonomous University of Barcelona (VHIR-UAB), 08035 Barcelona, Spain
| | - Laia Closa
- Transfusional Medicine Group, Vall d’Hebron Research Institute, Autonomous University of Barcelona (VHIR-UAB), 08035 Barcelona, Spain
- Histocompatibility and Immunogenetics Laboratory, Blood and Tissue Bank, 08005 Barcelona, Spain
| | - Ainara Ferrero
- Hematology Service, Arnau de Vilanova University Hospital, 25198 Lleida, Spain
| | - Cristina Marzo
- Hematology Service, Arnau de Vilanova University Hospital, 25198 Lleida, Spain
| | - Manuel Rubio-Rivas
- Department of Internal Medicine, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, L’Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.R.-R.)
| | - Francesca Mitjavila
- Department of Internal Medicine, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, L’Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.R.-R.)
| | - José Ramón González-Porras
- Department of Hematology, Complejo Asistencial Universitario de Salamanca (CAUSA), Instituto de Investigación Biomedica de Salamanca (IBSAL), Facultad de Medicina, Universidad de Salamanca (USAL), 37007 Salamanca, Spain
| | - José María Bastida
- Department of Hematology, Complejo Asistencial Universitario de Salamanca (CAUSA), Instituto de Investigación Biomedica de Salamanca (IBSAL), Facultad de Medicina, Universidad de Salamanca (USAL), 37007 Salamanca, Spain
| | - José Mateo
- Thrombosis and Hemostasis Unit, Sant Pau Campus Salut Barcelona, 08025 Barcelona, Spain
| | - Marina Carrasco
- Thrombosis and Hemostasis Unit, Sant Pau Campus Salut Barcelona, 08025 Barcelona, Spain
| | - Ángel Bernardo
- Hematology Service, Central University Hospital of Asturias, 33011 Oviedo, Spain
| | - Itziar Astigarraga
- Department of Pediatrics, Biobizkaia Health Research Institute, Hospital Universitario Cruces, University of the Basque Country UPV/EHU, 48903 Barakaldo, Spain
| | - Reyes Aguinaco
- Hematology Service, University Hospital Joan XXIII, 43002 Tarragona, Spain
| | - Irene Corrales
- Congenital Coagulopathies Laboratory, Blood and Tissue Bank, 08005 Barcelona, Spain
- Transfusional Medicine Group, Vall d’Hebron Research Institute, Autonomous University of Barcelona (VHIR-UAB), 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto Carlos III (ISCIII), 28029 Madrid, Spain
| | - Iris Garcia-Martínez
- Congenital Coagulopathies Laboratory, Blood and Tissue Bank, 08005 Barcelona, Spain
- Transfusional Medicine Group, Vall d’Hebron Research Institute, Autonomous University of Barcelona (VHIR-UAB), 08035 Barcelona, Spain
| | - Francisco Vidal
- Congenital Coagulopathies Laboratory, Blood and Tissue Bank, 08005 Barcelona, Spain
- Transfusional Medicine Group, Vall d’Hebron Research Institute, Autonomous University of Barcelona (VHIR-UAB), 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
5
|
Calvin DJD, Steve RJ, Kannangai R, Abraham P, Udhaya Kumar S, Balasundaram A, George Priya Doss C, Thomas V, Thomas A, Danda D, Fletcher JG. HPV and molecular mimicry in systemic lupus erythematosus and an impact of compiling B-cell epitopes and MHC-class II binding profiles with in silico evidence. J Biomol Struct Dyn 2023; 41:12338-12346. [PMID: 36744526 DOI: 10.1080/07391102.2023.2175261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/01/2023] [Indexed: 02/07/2023]
Abstract
Epidemiological link between HPV and SLE is evolving. The possibility of HPV infection-induced molecular mimicry and systemic lupus erythematosus (SLE) was elucidated through detailed in silico analyses. Conserved regions in the structural protein sequences of high-risk HPV types were inferred, and sequence homologies between viral and human peptides were identified to delineate proteins implicated in SLE. B-cell epitopes and MHC-class II binding were compiled using Immune Epitope Database and ProPred II analysis tool. Molecular modeling and molecular dynamics/simulation (MDS) were performed using AutoDock Vina and GROMACS, respectively. Sequence alignment revealed 32 conserved regions, and 27/32 viral peptides showed varying similarities to human peptides, rich in B-cell epitopes with superior accessibility, high hydrophilicity, antigenicity and disposition to bind many class-II HLA alleles. Molecular docking of 13 viral peptides homologous (100%) to human peptides implicated in SLE showed that VIR-PEP1 (QLFNKPYWL) and VIR-PEP2 (DTYRFVTS) exhibited higher binding affinities than corresponding human peptides to SLE predisposing HLA-DRB1 allele. MDS of these peptides showed that the viral peptides had superior folding, compactness, and a higher number of hydrogen bonds than human peptides throughout the simulation period. SASA analysis revealed that the VIR-PEP1&2 fluctuated less frequently than corresponding human peptides. MM-PBSA revealed that the VIR-PEP2 complex exhibited higher binding energy than the human peptide complex. This suggests that highly conserved structural peptides of high-risk HPV types homologous to human peptides could compete and bind avidly to the HLA allele associated with SLE and predispose HPV-infected individuals to SLE through molecular mimicry.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- D John Dickson Calvin
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Runal John Steve
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Rajesh Kannangai
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Priya Abraham
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, India
| | - S Udhaya Kumar
- Laboratory of Integrative Genomics, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Ambritha Balasundaram
- Laboratory of Integrative Genomics, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - C George Priya Doss
- Laboratory of Integrative Genomics, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Vinotha Thomas
- Department of Gynecologic Oncology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Anitha Thomas
- Department of Gynecologic Oncology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Debashish Danda
- Department of Clinical Immunology and Rheumatology, Christian Medical College, Vellore, Tamil Nadu, India
| | | |
Collapse
|
6
|
Liu B, Shao Y, Fu R. Current research status of HLA in immune-related diseases. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:340-350. [PMID: 33657268 PMCID: PMC8127548 DOI: 10.1002/iid3.416] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023]
Abstract
Human leukocyte antigen (HLA), also known as human major histocompatibility complex (MHC), is encoded by the HLA gene complex, and is currently known to have the highest gene density and the most polymorphisms among human chromosomal areas. HLA is divided into class I antigens, class II antigens, and class III antigens according to distribution and function. Classical HLA class I antigens include HLA-A, HLA-B, and HLA-C; HLA class II antigens include HLA-DP, HLA-DQ, and HLA-DR; nonclassical HLA class I and II molecules include HLA-F, E, H, X, DN, DO, and DM; and others, such as complement, are class III antigens. HLA is closely related to the body's immune response, regulation, and surveillance and is of great significance in the study of autoimmune diseases, tumor immunity, organ transplantation, and reproductive immunity. HLA is an important research topic that bridges immunology and clinical diseases. With the development of research methods and technologies, there will be more discoveries and broader prospects.
Collapse
Affiliation(s)
- Bingnan Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Yuanyuan Shao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, PR China
| |
Collapse
|
7
|
Luo S, Ma X, Li X, Xie Z, Zhou Z. Fulminant type 1 diabetes: A comprehensive review of an autoimmune condition. Diabetes Metab Res Rev 2020; 36:e3317. [PMID: 32223049 DOI: 10.1002/dmrr.3317] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 12/18/2022]
Abstract
Fulminant type 1 diabetes (FT1D) is a subset of type 1 diabetes characterized by extremely rapid pancreatic β-cell destruction with aggressive progression of hyperglycaemia and ketoacidosis. It was initially classified as idiopathic type 1 diabetes due to the absence of autoimmune markers. However, subsequent studies provide evidences supporting the involvement of autoimmunity in rapid β-cell loss in FT1D pathogenesis, which are crucial for FT1D being an autoimmune disease. This article highlights the role of immunological aspects in FT1D according to the autoimmune-associated genetic background, viral infection, innate immunity, adaptive immunity, and pancreas histology.
Collapse
Affiliation(s)
- Shuoming Luo
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education; National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Xiaoxi Ma
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education; National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Xia Li
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education; National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Zhiguo Xie
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education; National Clinical Research Center for Metabolic Diseases, Changsha, China
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education; National Clinical Research Center for Metabolic Diseases, Changsha, China
| |
Collapse
|
8
|
Andersson Svärd A, Maziarz M, Ramelius A, Lundgren M, Lernmark Å, Elding Larsson H. Decreased HLA-DQ expression on peripheral blood cells in children with varying number of beta cell autoantibodies. J Transl Autoimmun 2020; 3:100052. [PMID: 32743532 PMCID: PMC7388396 DOI: 10.1016/j.jtauto.2020.100052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/02/2020] [Indexed: 12/18/2022] Open
Abstract
The risk for type 1 diabetes is strongly associated with HLA-DQ and the appearance of beta cell autoantibodies against either insulin, glutamate decarboxylase (GAD65), insulinoma-associated protein-2 (IA-2), or zinc transporter 8 (ZnT8). Prolonged exposure to autoantibodies may be related to T cell exhaustion known to occur in chronic infections or autoimmune disorders. It was hypothesized that autoantibody exposure may affect HLA-DQ expression on peripheral blood cells and thereby contribute to T cell exhaustion thought to be associated with the pathogenesis of type 1 diabetes. The aim of this study was to determine whether autoantibody exposure as an expression of autoimmunity burden was related to peripheral blood cell HLA-DQ cell surface expression in either 1) a cross-sectional analysis or 2) cumulative as area under the trajectory of autoantibodies during long term follow-up in the Diabetes Prediction in Skåne (DiPiS) study. Children (n = 67), aged 10–15 years were analyzed for complete blood count, HLA-DQ cell surface median fluorescence intensity (MFI), autoantibody frequency, and HLA genotypes by Next Generation Sequencing. Decreased HLA-DQ cell surface MFI with an increasing number of autoantibodies was observed in CD16+, CD14+CD16−, CD4+ and CD8+ cells but not in CD19+ cells and neutrophils. HLA-DQ cell surface MFI was associated with HLA-DQ2/8 in CD4+ T cells, marginally in CD14+CD16− monocytes and CD8+ T cells. These associations appeared to be related to autoimmunity burden. The results suggest that HLA-DQ cell surface expression was related to HLA and autoimmunity burden. PBMC HLA-DQ surface expression in beta cell autoimmunity is poorly understood. Children, 10–15 years of age without or with beta cell autoantibodies were analyzed. HLA-DQ cell surface expression decreased with increasing number of autoantibodies. HLA-DQ cell surface expression was related to HLA and autoimmunity burden.
Collapse
Affiliation(s)
- Agnes Andersson Svärd
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital, 205 02, Malmö, Sweden
| | - Marlena Maziarz
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital, 205 02, Malmö, Sweden
| | - Anita Ramelius
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital, 205 02, Malmö, Sweden
| | - Markus Lundgren
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital, 205 02, Malmö, Sweden
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital, 205 02, Malmö, Sweden
| | - Helena Elding Larsson
- Department of Clinical Sciences, Lund University/CRC, Skåne University Hospital, 205 02, Malmö, Sweden
| | | |
Collapse
|
9
|
Kumar N, Mehra NK, Kanga U, Kaur G, Tandon N, Chuzho N, Mishra G, Neolia SC. Diverse human leukocyte antigen association of type 1 diabetes in north India. J Diabetes 2019; 11:719-728. [PMID: 30614662 DOI: 10.1111/1753-0407.12898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/29/2018] [Accepted: 01/03/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is a complex disease, with involvement of various susceptibility genes. Human leukocyte antigen (HLA) on chromosome 6p21 is major susceptibility region. This study examined genetic association of HLA genes with T1D. METHODS The study recruited 259 T1D patients and 706 controls from north India. PCR-SSP and LiPA were used to type HLA Class I and II alleles. RESULTS At HLA Class I locus, HLA-A*02, A*26, B*08 and B*50 were significantly increased in patients vs controls (39.8% vs 28.9% [Bonferroni-corrected P {Pc } = 0.032], 24.7% vs 9.6% [Pc = 4.83 × 10-8 ], 37.2% vs 15.7% [Pc = 1.92 × 10-9 ], and 19.4% vs 5.5% [Pc = 4.62 × 10-9 ], respectively). Similarly, in Class II region, DRB1*03 showed a strong positive association with T1D (78.7% vs 17.5% in controls; P = 1.02 × 10-9 ). Association of DRB1*04 with T1D (28.3% vs 15.5% in controls; Pc = 3.86 × 10-4 ) was not independent of DRB1*03. Negative associations were found between T1D and DRB1*07, *11, *13, and *15 (13.8% vs 26.1% in controls [Pc = 0.00175], 3.9% vs 16.9% in controls [Pc = 6.55× 10-6 ], 5.5% vs 21.6% in controls [Pc = 2.51 × 10-7 ], and 16.9% vs 43.9% in controls [Pc = 9.94× 10-10 ], respectively). Compared with controls, patients had significantly higher haplotype frequencies of A*26-B*08-DRB1*03-DQA1*05-DQB1*02 (10.43% vs 1.96%; P = 7.62 × 10-11 ), A*02-B*50-DRB1*03-DQA1*05-DQB1*02 (6.1% vs 0.71%; P = 2.19 × 10-10 ), A*24-B*08-DRB1*03-DQA1*05-DQB1*02 (4.72% vs 0.8%; P = 5.4 × 10-7 ), A*02-B*08-DRB1*03-DQA1*05-DQB1*02 (2.36% vs 0.18%; P = 3.6 × 10-5 ), and A*33-B*58-DRB1*03-DQA1*05-DQB1*02 (4.33% vs 1.25%; P = 0.00019). CONCLUSIONS In north India, T1D is independently associated only with HLA-DRB1*03 haplotypes, and is negatively associated with DRB1*07, *11, *13, and *15.
Collapse
Affiliation(s)
- Neeraj Kumar
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India
| | - Narinder K Mehra
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India
| | - Uma Kanga
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India
| | - Gurvinder Kaur
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India
| | - Nikhil Tandon
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi, India
| | - Neihenuo Chuzho
- Indian Council of Medical Research (ICMR)-National Institute of Pathology, Safdarjang Hospital Campus, New Delhi, India
| | - Gunja Mishra
- Indian Council of Medical Research (ICMR)-National Institute of Pathology, Safdarjang Hospital Campus, New Delhi, India
| | - Shekhar C Neolia
- Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
10
|
Cross AR, Lion J, Poussin K, Assayag M, Taupin JL, Glotz D, Mooney N. HLA-DQ alloantibodies directly activate the endothelium and compromise differentiation of FoxP3 high regulatory T lymphocytes. Kidney Int 2019; 96:689-698. [PMID: 31307777 DOI: 10.1016/j.kint.2019.04.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/28/2019] [Accepted: 04/19/2019] [Indexed: 10/26/2022]
Abstract
Development of donor-specific antibodies is associated with reduced allograft survival in renal transplantation. Recent clinical studies highlight the prevalence of human leukocyte antigen (HLA)-DQ antibodies amongst de novo donor-specific antibodies (DSAs), yet the specific contribution of these DSAs to rejection has not been examined. Antibody-mediated rejection primarily targets the microvasculature, so this study explored how patient HLA-DQ alloantibodies can modulate endothelial activation and so immunoregulation. HLA-DQ antibodies phosphorylated Akt and S6 kinase in microvascular endothelial cells. This activation prior to culture with alloreactive lymphocytes increased IL-6 and RANTES secretion. The antibody-mediated upregulation of IL-6 was indeed Akt-dependent. The binding of HLA-DQ antibodies to endothelial cells selectively reduced T cell alloproliferation and FoxP3high Treg differentiation. In clinical studies, detection of HLA-DQ DSAs with other DSAs is associated with worse graft survival than either alone. Endothelial cells stimulated with HLA-DR and HLA-DQ antibodies showed a synergistic increase in pro-inflammatory cytokine secretion and a decrease in Treg expansion. HLA-DQ antibodies strongly promote pro-inflammatory responses in isolation and in combination with other HLA antibodies. Thus, our data give new insights into the pathogenicity of HLA-DQ DSAs.
Collapse
Affiliation(s)
- Amy R Cross
- Human Immunology and Immunopathology, Inserm UMR 976, Paris, France; Institut de Recherche Saint Louis, Sorbonne Paris Cité, Université Paris Diderot, Sorbonne Paris, Paris, France
| | - Julien Lion
- Human Immunology and Immunopathology, Inserm UMR 976, Paris, France; Institut de Recherche Saint Louis, Sorbonne Paris Cité, Université Paris Diderot, Sorbonne Paris, Paris, France
| | - Karine Poussin
- Human Immunology and Immunopathology, Inserm UMR 976, Paris, France
| | - Maureen Assayag
- Human Immunology and Immunopathology, Inserm UMR 976, Paris, France
| | - Jean-Luc Taupin
- Human Immunology and Immunopathology, Inserm UMR 976, Paris, France; Institut de Recherche Saint Louis, Sorbonne Paris Cité, Université Paris Diderot, Sorbonne Paris, Paris, France; Laboratoire d'Immunologie et Histocompatibilité, Hôpital Saint Louis, Paris, France; LabEx Transplantex, Université de Strasbourg, Strasbourg, France
| | - Denis Glotz
- Human Immunology and Immunopathology, Inserm UMR 976, Paris, France; Institut de Recherche Saint Louis, Sorbonne Paris Cité, Université Paris Diderot, Sorbonne Paris, Paris, France; LabEx Transplantex, Université de Strasbourg, Strasbourg, France; Service de Néphrologie et Transplantation, Hôpital Saint Louis, Paris, France
| | - Nuala Mooney
- Human Immunology and Immunopathology, Inserm UMR 976, Paris, France; Institut de Recherche Saint Louis, Sorbonne Paris Cité, Université Paris Diderot, Sorbonne Paris, Paris, France; LabEx Transplantex, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
11
|
Manczinger M, Boross G, Kemény L, Müller V, Lenz TL, Papp B, Pál C. Pathogen diversity drives the evolution of generalist MHC-II alleles in human populations. PLoS Biol 2019; 17:e3000131. [PMID: 30703088 PMCID: PMC6372212 DOI: 10.1371/journal.pbio.3000131] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/12/2019] [Accepted: 01/15/2019] [Indexed: 02/03/2023] Open
Abstract
Central players of the adaptive immune system are the groups of proteins encoded in the major histocompatibility complex (MHC), which shape the immune response against pathogens and tolerance to self-peptides. The corresponding genomic region is of particular interest, as it harbors more disease associations than any other region in the human genome, including associations with infectious diseases, autoimmune disorders, cancers, and neuropsychiatric diseases. Certain MHC molecules can bind to a much wider range of epitopes than others, but the functional implication of such an elevated epitope-binding repertoire has remained largely unclear. It has been suggested that by recognizing more peptide segments, such promiscuous MHC molecules promote immune response against a broader range of pathogens. If so, the geographical distribution of MHC promiscuity level should be shaped by pathogen diversity. Three lines of evidence support the hypothesis. First, we found that in pathogen-rich geographical regions, humans are more likely to carry highly promiscuous MHC class II DRB1 alleles. Second, the switch between specialist and generalist antigen presentation has occurred repeatedly and in a rapid manner during human evolution. Third, molecular positions that define promiscuity level of MHC class II molecules are especially diverse and are under positive selection in human populations. Taken together, our work indicates that pathogen load maintains generalist adaptive immune recognition, with implications for medical genetics and epidemiology. Whereas specialist major histocompatibility complex (MHC) molecules initiate immune response against only relatively few pathogens, generalists provide protection against a broad range. Accordingly, this study shows that the geographical distribution of generalist MHC alleles in human populations reflects exposure to diverse infectious diseases. Variation in the human genome influences our susceptibility to infectious diseases, but the causal link between disease and underlying mutation often remains enigmatic. Major histocompatibility complex II (MHC class II) molecules shape both our immune response against pathogens and our tolerance of self-peptides. The genomic region that encodes MHC molecules is of particular interest, as it is home to more genetic disease associations than any other region in the human genome, including associations with infectious diseases, autoimmune disorders, cancers, and neuropsychiatric diseases. Here, we propose that MHC class II molecules can be categorized into two major types; specialists initiate effective immune response against only relatively few pathogens, while generalists provide protection against a broad range of pathogens. As support, we demonstrate that generalist MHC class II variants are more prevalent in human populations residing in pathogen-rich areas.
Collapse
Affiliation(s)
- Máté Manczinger
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
- MTA-SZTE Dermatological Research Group, University of Szeged, Szeged, Hungary
| | - Gábor Boross
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Lajos Kemény
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
- MTA-SZTE Dermatological Research Group, University of Szeged, Szeged, Hungary
| | - Viktor Müller
- Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Tobias L. Lenz
- Research Group for Evolutionary Immunogenomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
- * E-mail: (CP); (BP)
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
- * E-mail: (CP); (BP)
| |
Collapse
|