1
|
Bowling PE, Dasgupta S, Herbert JM. Eliminating Imaginary Vibrational Frequencies in Quantum-Chemical Cluster Models of Enzymatic Active Sites. J Chem Inf Model 2024; 64:3912-3922. [PMID: 38648614 DOI: 10.1021/acs.jcim.4c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
In constructing finite models of enzyme active sites for quantum-chemical calculations, atoms at the periphery of the model must be constrained to prevent unphysical rearrangements during geometry relaxation. A simple fixed-atom or "coordinate-lock" approach is commonly employed but leads to undesirable artifacts in the form of small imaginary frequencies. These preclude evaluation of finite-temperature free-energy corrections, limiting thermochemical calculations to enthalpies only. Full-dimensional vibrational frequency calculations are possible by replacing the fixed-atom constraints with harmonic confining potentials. Here, we compare that approach to an alternative strategy in which fixed-atom contributions to the Hessian are simply omitted. While the latter strategy does eliminate imaginary frequencies, it tends to underestimate both the zero-point energy and the vibrational entropy while introducing artificial rigidity. Harmonic confining potentials eliminate imaginary frequencies and provide a flexible means to construct active-site models that can be used in unconstrained geometry relaxations, affording better convergence of reaction energies and barrier heights with respect to the model size, as compared to models with fixed-atom constraints.
Collapse
Affiliation(s)
- Paige E Bowling
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Saswata Dasgupta
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, California 92093, United States
| | - John M Herbert
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
2
|
Vedalankar P, Tripathy BC. Light dependent protochlorophyllide oxidoreductase: a succinct look. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:719-731. [PMID: 38846463 PMCID: PMC11150229 DOI: 10.1007/s12298-024-01454-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/01/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024]
Abstract
Reducing protochlorophyllide (Pchlide) to chlorophyllide (Chlide) is a major regulatory step in the chlorophyll biosynthesis pathway. This reaction is catalyzed by light-dependent protochlorophyllide oxidoreductase (LPOR) in oxygenic phototrophs, particularly angiosperms. LPOR-NADPH and Pchlide form a ternary complex to be efficiently photo-transformed to synthesize Chlide and, subsequently, chlorophyll during the transition from skotomorphogenesis to photomorphogenesis. Besides lipids, carotenoids and poly-cis xanthophylls influence the formation of the photoactive LPOR complexes and the PLBs. The crystal structure of LPOR reveals evolutionarily conserved cysteine residues implicated in the Pchlide binding and catalysis around the active site. Different isoforms of LPOR viz PORA, PORB, and PORC expressed at different stages of chloroplast development play a photoprotective role by quickly transforming the photosensitive Pchlide to Chlide. Non-photo-transformed Pchlide acts as a photosensitizer to generate singlet oxygen that causes oxidative stress and cell death. Therefore, different isoforms of LPOR have evolved and differentially expressed during plant development to protect plants from photodamage and thus play a pivotal role during photomorphogenesis. This review brings out the salient features of LPOR structure, structure-function relationships, and ultra-fast photo transformation of Pchlide to Chlide by oligomeric and polymeric forms of LPOR.
Collapse
Affiliation(s)
| | - Baishnab C. Tripathy
- Department of Biotechnology, Sharda University, Greater Noida, Uttar Pradesh 201310 India
| |
Collapse
|
3
|
Silva PJ, Cheng Q. An Alternative Proposal for the Reaction Mechanism of Light-Dependent Protochlorophyllide Oxidoreductase. ACS Catal 2022; 12:2589-2605. [PMID: 36568346 PMCID: PMC9778109 DOI: 10.1021/acscatal.1c05351] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Light-dependent protochlorophyllide oxidoreductase is one of the few known enzymes that require a quantum of light to start their catalytic cycle. Upon excitation, it uses NADPH to reduce the C17-C18 in its substrate (protochlorophyllide) through a complex mechanism that has heretofore eluded precise determination. Isotopic labeling experiments have shown that the hydride-transfer step is very fast, with a small barrier close to 9 kcal mol-1, and is followed by a proton-transfer step, which has been postulated to be the protonation of the product by the strictly conserved Tyr189 residue. Since the structure of the enzyme-substrate complex has not yet been experimentally determined, we first used modeling techniques to discover the actual substrate binding mode. Two possible binding modes were found, both yielding stable binding (as ascertained through molecular dynamics simulations) but only one of which placed the critical C17=C18 bond consistently close to the NADPH pro-S hydrogen and to Tyr189. This binding pose was then used as a starting point for the testing of previous mechanistic proposals using time-dependent density functional theory. The quantum-chemical computations clearly showed that such mechanisms have prohibitively high activation energies. Instead, these computations showed the feasibility of an alternative mechanism initiated by excited-state electron transfer from the key Tyr189 to the substrate. This mechanism appears to agree with the extant experimental data and reinterprets the final protonation step as a proton transfer to the active site itself rather than to the product, aiming at regenerating it for another round of catalysis.
Collapse
Affiliation(s)
- Pedro J. Silva
- FP-I3ID/Fac.
de Ciências da Saúde, Universidade
Fernando Pessoa, 4200-150 Porto, Portugal,UCIBIO@REQUIMTE,
BioSIM, Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal,
| | - Qi Cheng
- Department
of Biochemistry, College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071000, China,State
Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei 071000, China,
| |
Collapse
|
4
|
Vedalankar P, Tripathy BC. Evolution of light-independent protochlorophyllide oxidoreductase. PROTOPLASMA 2019; 256:293-312. [PMID: 30291443 DOI: 10.1007/s00709-018-1317-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/27/2018] [Indexed: 06/08/2023]
Abstract
The nonhomologous enzymes, the light-independent protochlorophyllide reductase (DPOR) and the light-dependent protochlorophyllide oxidoreductase (LPOR), catalyze the reduction of protochlorophyllide (Pchlide) to chlorophyllide (Chlide) in the penultimate step of biosynthesis of chlorophyll (Chl) required for photosynthetic light absorption and energy conversion. The two enzymes differ with respect to the requirement of light for catalysis and oxygen sensitivity. DPOR and LPOR initially evolved in the ancestral prokaryotic genome perhaps at different times. DPOR originated in the anoxygenic environment of the Earth from nitrogenase-like enzyme of methanogenic archaea. Due to the transition from anoxygenic to oxygenic photosynthesis in the prokaryote, the DPOR was mostly inactivated in the daytime by photosynthetic O2 leading to the evolution of oxygen-insensitive LPOR that could function in the light. The primary endosymbiotic event transferred the DPOR and LPOR genes to the eukaryotic phototroph; the DPOR remained in the genome of the ancestor that turned into the plastid, whereas LPOR was transferred to the host nuclear genome. From an evolutionary point of view, several compelling theories that explain the disappearance of DPOR from several species cutting across different phyla are as follows: (i) pressure of the oxygenic environment; (ii) change in the light conditions and temperature; and (iii) lineage-specific gene losses, RNA editing, and nonsynonymous substitution. Certain primary amino acid sequence and the physiochemical properties of the ChlL subunit of DPOR have similarity with that of LPOR suggesting a convergence of these two enzymes in certain evolutionary event. The newly obtained sequence data from different phototrophs will further enhance the width of the phylogenetic information on DPOR.
Collapse
Affiliation(s)
| | - Baishnab C Tripathy
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
5
|
Silva PJ. Refining the reaction mechanism of O 2 towards its co-substrate in cofactor-free dioxygenases. PeerJ 2016; 4:e2805. [PMID: 28028471 PMCID: PMC5178339 DOI: 10.7717/peerj.2805] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/19/2016] [Indexed: 11/21/2022] Open
Abstract
Cofactor-less oxygenases perform challenging catalytic reactions between singlet co-substrates and triplet oxygen, in spite of apparently violating the spin-conservation rule. In 1-H-3-hydroxy-4-oxoquinaldine-2,4-dioxygenase, the active site has been suggested by quantum chemical computations to fine tune triplet oxygen reactivity, allowing it to interact rapidly with its singlet substrate without the need for spin inversion, and in urate oxidase the reaction is thought to proceed through electron transfer from the deprotonated substrate to an aminoacid sidechain, which then feeds the electron to the oxygen molecule. In this work, we perform additional quantum chemical computations on these two systems to elucidate several intriguing features unaddressed by previous workers. These computations establish that in both enzymes the reaction proceeds through direct electron transfer from co-substrate to O2 followed by radical recombination, instead of minimum-energy crossing points between singlet and triplet potential energy surfaces without formal electron transfer. The active site does not affect the reactivity of oxygen directly but is crucial for the generation of the deprotonated form of the co-substrates, which have redox potentials far below those of their protonated forms and therefore may transfer electrons to oxygen without sizeable thermodynamic barriers. This mechanism seems to be shared by most cofactor-less oxidases studied so far.
Collapse
Affiliation(s)
- Pedro J Silva
- FP-ENAS/Fac. de Ciências da Saúde, Universidade Fernando Pessoa , Porto , Portugal
| |
Collapse
|
6
|
Li Q, Fan S, Li X, Jin Y, He W, Zhou J, Cen S, Yang Z. Insights into the Phosphoryl Transfer Mechanism of Human Ubiquitous Mitochondrial Creatine Kinase. Sci Rep 2016; 6:38088. [PMID: 27909311 PMCID: PMC5133464 DOI: 10.1038/srep38088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/03/2016] [Indexed: 12/31/2022] Open
Abstract
Human ubiquitous mitochondrial creatine kinase (uMtCK) is responsible for the regulation of cellular energy metabolism. To investigate the phosphoryl-transfer mechanism catalyzed by human uMtCK, in this work, molecular dynamic simulations of uMtCK∙ATP-Mg2+∙creatine complex and quantum mechanism calculations were performed to make clear the puzzle. The theoretical studies hereof revealed that human uMtCK utilizes a two-step dissociative mechanism, in which the E227 residue of uMtCK acts as the catalytic base to accept the creatine guanidinium proton. This catalytic role of E227 was further confirmed by our assay on the phosphatase activity. Moreover, the roles of active site residues in phosphoryl transfer reaction were also identified by site directed mutagenesis. This study reveals the structural basis of biochemical activity of uMtCK and gets insights into its phosphoryl transfer mechanism.
Collapse
Affiliation(s)
- Quanjie Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shuai Fan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiaoyu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuanyuan Jin
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Weiqing He
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jinming Zhou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - ZhaoYong Yang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|