1
|
Kang Y, Kim DS, Hwang H, Kim Y, Seo YJ, Hinterdorfer P, Ko K. Plant-derived recombinant macromolecular PAP-IgG Fc as a novel prostate cancer vaccine candidate eliciting robust immune responses. Transgenic Res 2025; 34:16. [PMID: 40140219 DOI: 10.1007/s11248-025-00433-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/17/2025] [Indexed: 03/28/2025]
Abstract
Prostatic acid phosphatase (PAP) is a specific protein that is highly expressed in prostate cancer. In this study, we constructed two recombinant PAP fusion genes: PAP fused to the immunoglobulin G (IgG) Fc fragment (designated PAP-Fc) and PAP-Fc fused to the endoplasmic reticulum retention sequence KDEL (designated PAP-FcK). Transgenic Nicotiana tabacum plants expressing these recombinant macromolecular proteins (MPs) were generated using Agrobacterium-mediated transformation, and the presence of both genes was confirmed through genomic PCR. Western blot analysis validated the expression of PAP-Fc and PAP-FcK MPs, which were successfully purified via protein A affinity chromatography. Size-exclusion high-performance liquid chromatography revealed dimeric peaks for PAP-Fc (PAP-FcP) and PAP-FcK (PAP-FcKP). Bio-transmission electron microscopy demonstrated 'Y'-shaped protein particles resembling antibody structures. Moreover, PAP-FcP and PAP-FcKP exhibited a high association rate with human FcγR and FcRn. Vaccination of mice with both PAP-FcP and PAP-FcKP resulted in increased total IgG against PAP and enhanced activation of CD4+ T cells, comparable to mice immunized with PAP, which served as a positive control. These findings indicate that both plant-derived MPs can effectively induce adaptive immunity, positioning them as promising candidates for prostate cancer vaccines. Overall, plants expressing PAP-Fc and PAP-FcK represent a viable production system for antigenic macromolecule-based prostate cancer vaccines.
Collapse
Affiliation(s)
- Yangjoo Kang
- Department of Medicine, Medicine of College, Chung-Ang University, Seoul, South Korea
| | - Deuk-Su Kim
- Department of Medicine, Medicine of College, Chung-Ang University, Seoul, South Korea
| | - Hyunjoo Hwang
- Department of Medicine, Medicine of College, Chung-Ang University, Seoul, South Korea
| | - Yerin Kim
- Department of Medicine, Medicine of College, Chung-Ang University, Seoul, South Korea
| | - Young-Jin Seo
- Department of Life Science, Chung-Ang University, Seoul, South Korea
| | - Peter Hinterdorfer
- Department of Applied Experimental Biophysics, Johannes Kepler University Linz, 4040, Linz, Austria
| | - Kisung Ko
- Department of Medicine, Medicine of College, Chung-Ang University, Seoul, South Korea.
| |
Collapse
|
2
|
CHOI HE, LEE JI, JO SY, CHAE YC, LEE JH, SUN HJ, KO K, HONG S, KONG KH. Functional expression of the sweet-tasting protein brazzein in transgenic tobacco. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.40521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Song I, Lee YK, Kim JW, Lee SW, Park SR, Lee HK, Oh S, Ko K, Kim MK, Park SJ, Kim DH, Kim MS, Kim DS, Ko K. Effect of an Endoplasmic Reticulum Retention Signal Tagged to Human Anti-Rabies mAb SO57 on Its Expression in Arabidopsis and Plant Growth. Mol Cells 2021; 44:770-779. [PMID: 34711693 PMCID: PMC8560589 DOI: 10.14348/molcells.2021.2002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 11/30/2022] Open
Abstract
Transgenic Arabidopsis thaliana expressing an anti-rabies monoclonal antibody (mAb), SO57, was obtained using Agrobacterium-mediated floral dip transformation. The endoplasmic reticulum (ER) retention signal Lys-Asp-Glu-Leu (KDEL) was tagged to the C-terminus of the anti-rabies mAb heavy chain to localize the mAb to the ER and enhance its accumulation. When the inaccurately folded proteins accumulated in the ER exceed its storage capacity, it results in stress that can affect plant development and growth. We generated T1 transformants and obtained homozygous T3 seeds from transgenic Arabidopsis to investigate the effect of KDEL on plant growth. The germination rate did not significantly differ between plants expressing mAb SO57 without KDEL (SO plant) and mAb SO57 with KDEL (SOK plant). The primary roots of SOK agar media grown plants were slightly shorter than those of SO plants. Transcriptomic analysis showed that expression of all 11 ER stress-related genes were not significantly changed in SOK plants relative to SO plants. SOK plants showed approximately three-fold higher mAb expression levels than those of SO plants. Consequently, the purified mAb amount per unit of SOK plant biomass was approximately three times higher than that of SO plants. A neutralization assay revealed that both plants exhibited efficient rapid fluorescent focus inhibition test values against the rabies virus relative to commercially available human rabies immunoglobulins. KDEL did not upregulate ER stress-related genes; therefore, the enhanced production of the mAb did not affect plant growth. Thus, KDEL fusion is recommended for enhancing mAb production in plant systems.
Collapse
Affiliation(s)
- Ilchan Song
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Young Koung Lee
- Plasma Technology Research Center, National Fusion Research Institute, Gunsan 54004, Korea
| | - Jin Wook Kim
- Department of Urology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Seung-Won Lee
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Se Ra Park
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Hae Kyung Lee
- Division of Zoonotic and Vector Borne Diseases Research, Korea National Institute of Health, Osong 28159, Korea
| | - Soyeon Oh
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Kinarm Ko
- Department of Stem Cell Biology, Konkuk University School of Medicine, Seoul 05029, Korea
| | - Mi Kyung Kim
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Soon Ju Park
- Division of Biological Sciences, Wonkwang University, Iksan 54538, Korea
| | - Dae Heon Kim
- Department of Biology, Sunchon National University, Sunchon 57922, Korea
| | - Moon-Soo Kim
- Department of Chemistry, Western Kentucky University, Bowling Green, KY 42101, USA
| | - Do Sun Kim
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Wanju 55365, Korea
| | - Kisung Ko
- Department of Medicine, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|