1
|
Castellano-Hinojosa A, Gallardo-Altamirano MJ, Santo Svierzoski ND, Pozo C, González-López J, González-Martínez A. Anticancer drugs alter active nitrogen-cycling communities with effects on the nitrogen removal efficiency of a continuous-flow aerobic granular sludge system. CHEMOSPHERE 2025; 376:144279. [PMID: 40073731 DOI: 10.1016/j.chemosphere.2025.144279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/26/2025] [Accepted: 03/01/2025] [Indexed: 03/14/2025]
Abstract
There is increasing awareness of the presence of anticancer drugs (ACDs) in wastewater. Nonetheless, how ACDs affect the performance of wastewater treatment systems and their microbial populations remains largely unclear. This study investigated the effects of three common ACDs (cyclophosphamide, tamoxifen, and methotrexate) at varying concentrations on physicochemical parameters and drug removal efficiency in an aerobic granular sludge (AGS) system operated in a continuous-flow reactor. Additionally, it examined the abundance of active microbial communities, including nitrifiers (amoA gene from ammonia-oxidizing bacteria and archaea) and denitrifiers (napA, narG, nirK, nirS, nosZ genes), as well as the biodiversity of active prokaryotic communities. The concentration level of ACDs determines variations in biomass density, granule integrity, and removal efficiencies of organic matter (OM) and total nitrogen. Both medium and high ACD concentrations negatively impact these physicochemical parameters. The findings revealed that AGS functioning within a continuous system could help remove ACDs, but removal efficiencies depended on the specific drug and concentration applied. At medium and high ACD concentrations a marked reduction in the abundance of active bacterial and archaeal communities, including nitrifiers and denitrifiers, was observed, alongside a decline in microbial diversity and a transformation in community composition. Specific bacterial genera, which are crucial for OM degradation, nitrification and denitrification were identified as particularly sensitive to anticancer drugs. Our findings highlight the need for monitoring and managing anticancer drugs in wastewater systems, as they can substantially alter treatment performance, nitrogen-cycling communities, and bacterial community composition.
Collapse
Affiliation(s)
- Antonio Castellano-Hinojosa
- Environmental Microbiology Group, Institute of Water Research, University of Granada, Granada, 18003, Spain; Department of Microbiology, University of Granada, Granada, 18071, Spain
| | | | | | - Clementina Pozo
- Environmental Microbiology Group, Institute of Water Research, University of Granada, Granada, 18003, Spain; Department of Microbiology, University of Granada, Granada, 18071, Spain
| | - Jesús González-López
- Environmental Microbiology Group, Institute of Water Research, University of Granada, Granada, 18003, Spain; Department of Microbiology, University of Granada, Granada, 18071, Spain
| | - Alejandro González-Martínez
- Environmental Microbiology Group, Institute of Water Research, University of Granada, Granada, 18003, Spain; Department of Microbiology, University of Granada, Granada, 18071, Spain
| |
Collapse
|
2
|
Rosa-Masegosa A, Rodriguez-Sanchez A, Gorrasi S, Fenice M, Gonzalez-Martinez A, Gonzalez-Lopez J, Muñoz-Palazon B. Microbial Ecology of Granular Biofilm Technologies for Wastewater Treatment: A Review. Microorganisms 2024; 12:433. [PMID: 38543484 PMCID: PMC10972187 DOI: 10.3390/microorganisms12030433] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 04/02/2025] Open
Abstract
Nowadays, the discharge of wastewater is a global concern due to the damage caused to human and environmental health. Wastewater treatment has progressed to provide environmentally and economically sustainable technologies. The biological treatment of wastewater is one of the fundamental bases of this field, and the employment of new technologies based on granular biofilm systems is demonstrating success in tackling the environmental issues derived from the discharge of wastewater. The granular-conforming microorganisms must be evaluated as functional entities because their activities and functions for removing pollutants are interconnected with the surrounding microbiota. The deep knowledge of microbial communities allows for the improvement in system operation, as the proliferation of microorganisms in charge of metabolic roles could be modified by adjustments to operational conditions. This is why engineering must consider the intrinsic microbiological aspects of biological wastewater treatment systems to obtain the most effective performance. This review provides an extensive view of the microbial ecology of biological wastewater treatment technologies based on granular biofilms for mitigating water pollution.
Collapse
Affiliation(s)
- Aurora Rosa-Masegosa
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (A.R.-M.); (A.R.-S.); (A.G.-M.); (J.G.-L.)
| | - Alejandro Rodriguez-Sanchez
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (A.R.-M.); (A.R.-S.); (A.G.-M.); (J.G.-L.)
| | - Susanna Gorrasi
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy; (S.G.); (M.F.)
| | - Massimiliano Fenice
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy; (S.G.); (M.F.)
| | - Alejandro Gonzalez-Martinez
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (A.R.-M.); (A.R.-S.); (A.G.-M.); (J.G.-L.)
| | - Jesus Gonzalez-Lopez
- Department of Microbiology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; (A.R.-M.); (A.R.-S.); (A.G.-M.); (J.G.-L.)
| | - Barbara Muñoz-Palazon
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, 01100 Viterbo, Italy; (S.G.); (M.F.)
| |
Collapse
|
3
|
Mills S, Trego AC, Prevedello M, De Vrieze J, O’Flaherty V, Lens PN, Collins G. Unifying concepts in methanogenic, aerobic, and anammox sludge granulation. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 17:100310. [PMID: 37705860 PMCID: PMC10495608 DOI: 10.1016/j.ese.2023.100310] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 06/17/2023] [Accepted: 08/05/2023] [Indexed: 09/15/2023]
Abstract
The retention of dense and well-functioning microbial biomass is crucial for effective pollutant removal in several biological wastewater treatment technologies. High solids retention is often achieved through aggregation of microbial communities into dense, spherical aggregates known as granules, which were initially discovered in the 1980s. These granules have since been widely applied in upflow anaerobic digesters for waste-to-energy conversions. Furthermore, granular biomass has been applied in aerobic wastewater treatment and anaerobic ammonium oxidation (anammox) technologies. The mechanisms underpinning the formation of methanogenic, aerobic, and anammox granules are the subject of ongoing research. Although each granule type has been extensively studied in isolation, there has been a lack of comparative studies among these granulation processes. It is likely that there are some unifying concepts that are shared by all three sludge types. Identifying these unifying concepts could allow a unified theory of granulation to be formed. Here, we review the granulation mechanisms of methanogenic, aerobic, and anammox granular sludge, highlighting several common concepts, such as the role of extracellular polymeric substances, cations, and operational parameters like upflow velocity and shear force. We have then identified some unique features of each granule type, such as different internal structures, microbial compositions, and quorum sensing systems. Finally, we propose that future research should prioritize aspects of microbial ecology, such as community assembly or interspecies interactions in individual granules during their formation and growth.
Collapse
Affiliation(s)
- Simon Mills
- Microbial Communities Laboratory, School of Biological and Chemical Sciences, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Anna Christine Trego
- Microbial Ecology Laboratory School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Marco Prevedello
- Microbial Communities Laboratory, School of Biological and Chemical Sciences, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Jo De Vrieze
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| | - Vincent O’Flaherty
- Microbial Ecology Laboratory School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Piet N.L. Lens
- University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Gavin Collins
- Microbial Communities Laboratory, School of Biological and Chemical Sciences, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| |
Collapse
|
4
|
Pelevina AV, Berestovskaya YY, Grachev VA, Dorofeev AG, Slatinskaya OV, Maksimov GV, Kallistova AY, Nikolaev YA, Grouzdev EV, Ravin NV, Pimenov NV, Mardanov AV. A Phosphate-Accumulating Microbial Community in the Laboratory Bioreactor Predominated by “Candidatus Accumulibacter”. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722800232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
5
|
Bacterial Community Structure and Dynamic Changes in Different Functional Areas of a Piggery Wastewater Treatment System. Microorganisms 2021; 9:microorganisms9102134. [PMID: 34683455 PMCID: PMC8540373 DOI: 10.3390/microorganisms9102134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 12/04/2022] Open
Abstract
Chemicals of emerging concern (CEC) in pig farm breeding wastewater, such as antibiotics, will soon pose a serious threat to public health. It is therefore essential to consider improving the treatment efficiency of piggery wastewater in terms of microorganisms. In order to optimize the overall piggery wastewater treatment system from the perspective of the bacterial community structure and its response to environmental factors, five samples were randomly taken from each area of a piggery’s wastewater treatment system using a random sampling method. The bacterial communities’ composition and their correlation with wastewater quality were then analyzed using Illumina MiSeq high-throughput sequencing. The results showed that the bacterial community composition of each treatment unit was similar. However, differences in abundance were significant, and the bacterial community structure gradually changed with the process. Proteobacteria showed more adaptability to an anaerobic environment than Firmicutes, and the abundance of Tissierella in anaerobic zones was low. The abundance of Clostridial (39.02%) and Bacteroides (20.6%) in the inlet was significantly higher than it was in the aerobic zone and the anoxic zone (p < 0.05). Rhodocyclaceae is a key functional microbial group in a wastewater treatment system, and it is a dominant microbial group in activated sludge. Redundancy analysis (RDA) showed that chemical oxygen demand (COD) had the greatest impact on bacterial community structure. Total phosphorus (TP), total nitrogen (TN), PH and COD contents were significantly negatively correlated with Sphingobacteriia, Betaproteobacteria and Gammaproteobacteria, and significantly positively correlated with Bacteroidia and Clostridia. These results offer basic data and theoretical support for optimizing livestock wastewater treatment systems using bacterial community structures.
Collapse
|
6
|
Ahmad HA, Ni SQ, Ahmad S, Zhang J, Ali M, Ngo HH, Guo W, Tan Z, Wang Q. Gel immobilization: A strategy to improve the performance of anaerobic ammonium oxidation (anammox) bacteria for nitrogen-rich wastewater treatment. BIORESOURCE TECHNOLOGY 2020; 313:123642. [PMID: 32536456 DOI: 10.1016/j.biortech.2020.123642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Anaerobic ammonium oxidation (anammox) process appears a suitable substitute to nitrification-denitrification at a lower C/N ratios. Anammox is a chemolithoautotrophic process, belong to phylum Planctomycetes, and they are slow growing bacteria. Different strategies, e.g., biofilm formation, granulation and gel immobilization, have been applied to maintain a critical mass of bacterial cells in the system by avoiding washout from the bioreactor. Gel immobilization of anammox appears the best alternative to the natural process of biofilm formation and granulation. Polyvinyl alcohol-sodium alginate, polyethylene glycol, and waterborne polyurethane are the most reported materials used for the entrapment of anammox bacteria. However, dissolution of the gel beads refrains its application for long term bioprocess. Magnetic powder could coat on the surface of the beads which may increase the mechanical strength and durability of pellets. Application and problem of immobilization technology for the commercialization of this technology also addressed.
Collapse
Affiliation(s)
- Hafiz Adeel Ahmad
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Shou-Qing Ni
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China.
| | - Shakeel Ahmad
- Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Jian Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Muhammad Ali
- King Abdullah University of Science and Technology, Water Desalination and Reuse Center, Thuwal 23955-6900, Saudi Arabia
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Wenshan Guo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Zuwan Tan
- China Gezhouba Group Co., Ltd. & China Gezhouba Group Three Gorges Construction Engineering Co., Ltd., Yichang, China
| | - Qi Wang
- Shandong Hongda Construction Engineering Co., Ltd., Jinan, China
| |
Collapse
|
7
|
Bao Q, Hosoe A, Hosomi M, Terada A. Quorum quenching acylase impacts the viability and morphological change of Agrobacterium tumefaciens cells. J Biosci Bioeng 2020; 130:82-88. [PMID: 32280054 DOI: 10.1016/j.jbiosc.2020.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 11/17/2022]
Abstract
Acylase is known as a quorum quenching enzyme that degrades N-acyl-homoserine lactones (AHLs), a key signaling molecule in a quorum sensing (QS) mechanism. Acylase I cleaves the acyl-chain in the chemical structures of AHLs, thereby exerting an anti-biofilm effect by the inhibition of bacterial cell-cell communication and resultant secretion of extracellular polymeric substances (EPS). However, the physical and physiological impacts of acylase on bacterial cells remain to be systematically elucidated. This study, therefore, investigated the effect of active and inactive acylase addition on the growth, viability, and cell morphologies of Agrobacterium tumefaciens. For comparison, active and inactive lysozymes were taken as positive controls. The results showed that active acylase inhibited A. tumefaciens cell growth at concentrations ranging from 0.1 to 1000 μg mL-1, and so did active lysozyme. Fluorescent detection by Live/Dead staining underpinned that cell viability of A. tumefaciens decreased at concentrations higher than 0.1 μg mL-1 for both acylase and lysozyme, although lysozyme inflicted higher degree of cellular damage. Moreover, atomic force microscopy unraveled a noticeable distortion of A. tumefaciens cells by both acylase and lysozyme. Together, the results showed that acylase not only blocked AHLs-based QS mechanisms but also compromised cell viability and altered surface morphology of A. tumefaciens cells, as observed by the addition of hydrolase.
Collapse
Affiliation(s)
- Qian Bao
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei, Tokyo 184-8588, Japan.
| | - Ayaka Hosoe
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei, Tokyo 184-8588, Japan.
| | - Masaaki Hosomi
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei, Tokyo 184-8588, Japan.
| | - Akihiko Terada
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|