1
|
Shi Q, Xie J, Wu J, Chen S, Sun G, Zhang J. Characterization of the complete mitochondrial genome of an endemic species in China, Aulocera merlina (Lepidoptera: Nymphalidae: Satyrinae) and phylogenetic analysis within Satyrinae. Ecol Evol 2024; 14:e11355. [PMID: 38694754 PMCID: PMC11061544 DOI: 10.1002/ece3.11355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/01/2024] [Accepted: 04/12/2024] [Indexed: 05/04/2024] Open
Abstract
The mitochondrial genome (mitogenome) has been extensively used as molecular markers in determining the insect phylogenetic relationships. In order to resolve the relationships among tribes and subtribes of Satyrinae at the mitochondrial genomic level, we obtained the complete mitogenome of Aulocera merlina (Oberthür, 1890) (Lepidoptera: Nymphalidae: Satyrinae) with a size of 15,259 bp. The mitogenome consisted of 37 typical genes, including 13 protein-coding genes (PCGs), 2 ribosomal RNA genes (rRNAs), 22 transfer RNA genes (tRNAs), and an A + T-rich region. The gene organization and arrangement were similar to those of all other known Satyrinae mitogenomes. All PCGs were initiated with the canonical codon pattern ATN, except for the cox1 gene, which used an atypical CGA codon. Nine PCGs used the complete stop codon TAA, while the remaining PCGs (cox1, cox2, nad4, and nad5) were terminated with a single T nucleotide. The canonical cloverleaf secondary structures were found in all tRNAs, except for trnS1 which lacked a dihydrouridine arm. The 448 bp A + T-rich region was located between rrnS and trnM, and it included the motif ATAGA followed by a 19-bp poly-T stretch and a microsatellite-like (TA)6 element preceded by the ATTTA motif. The phylogenetic tree, inferred using Bayesian inference and maximum likelihood methods, generated similar tree topologies, revealing well-supported monophyletic groups at the tribe level and recovering the relationship ((Satyrini + Melanitini) + ((Amathusiini + Elymniini) + Zetherini)). The close relationship between Satyrina and Melanargiina within the Satyrini was widely accepted. Additionally, Lethina, Parargina, and Mycalesina were closely related and collectively formed a sister group to Coenonymphina. Moreover, A. merlina was closely related to Oeneis buddha within the Satyrina. These findings will provide valuable information for future studies aiming to elucidate the phylogenetic relationships of Satyrinae.
Collapse
Affiliation(s)
- Qinghui Shi
- Fujian Provincial Key Laboratory of Resources and Environment Monitoring & Sustainable Management and UtilizationSanming UniversitySanmingChina
| | - Jinling Xie
- Fujian Provincial Key Laboratory of Resources and Environment Monitoring & Sustainable Management and UtilizationSanming UniversitySanmingChina
| | - Jialing Wu
- Fujian Provincial Key Laboratory of Resources and Environment Monitoring & Sustainable Management and UtilizationSanming UniversitySanmingChina
| | - Shengchung Chen
- Fujian Provincial Key Laboratory of Resources and Environment Monitoring & Sustainable Management and UtilizationSanming UniversitySanmingChina
| | - Gang Sun
- Fujian Provincial Key Laboratory of Resources and Environment Monitoring & Sustainable Management and UtilizationSanming UniversitySanmingChina
| | - Juncheng Zhang
- Fujian Provincial Key Laboratory of Resources and Environment Monitoring & Sustainable Management and UtilizationSanming UniversitySanmingChina
- Medical Plant Exploitation and Utilization Engineering Research CenterSanming UniversitySanmingChina
| |
Collapse
|
2
|
Bragard C, Baptista P, Chatzivassiliou E, Di Serio F, Gonthier P, Jaques Miret JA, Justesen AF, Magnusson CS, Milonas P, Navas‐Cortes JA, Parnell S, Potting R, Reignault PL, Stefani E, Thulke H, Van der Werf W, Vicent Civera A, Yuen J, Zappalà L, Grégoire J, Malumphy C, Gobbi A, Kertesz V, Maiorano A, Sfyra O, MacLeod A. Pest categorisation of Dendrolimus punctatus. EFSA J 2024; 22:e8504. [PMID: 38444826 PMCID: PMC10912981 DOI: 10.2903/j.efsa.2024.8504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
The EFSA Panel on Plant Health performed a pest categorisation of Dendrolimus punctatus (Lepidoptera: Lasiocampidae), following a commodity risk assessment of bonsai Pinus parviflora grafted onto P. thunbergii from China, in which D. punctatus was identified as a pest of possible concern to the European Union (EU). D. punctatus, also known as the Masson pine caterpillar, is present in China, Taiwan, Vietnam, India and has recently spread to Japanese islands close to Taiwan. Larval feeding on the needles of Pinus elliottii, P. luchuensis, P. massoniana, P. merkusii and P. tabulaeformis causes important damage. D. punctatus larvae can also feed on P. armandii, P. echinata, P. latteri, P. parviflora, P. sylvestris var. mongolica, P. taeda, P. taiwanensis and P. thunbergii, but full development on these hosts is uncertain. The pest has three to five generations per year; winter is spent as larvae on branch tips, on tree trunks and in the soil. The females lay egg clusters on pine needles. Pupation occurs in cocoons attached to branches or needles. D. punctatus could enter the EU either as eggs, larvae or pupae in the foliage of plants for planting or cut branches, as larvae on wood with bark or as overwintering larvae in branches, crevices in the bark or in the litter of potted plants. However, Annex VI of 2019/2072 prohibits the introduction of D. punctatus hosts (Pinus spp.) from countries and areas where the pest occurs. There are climate zones where the pest occurs in Asia that also occur in the EU, though they are limited, which constitutes an uncertainty regarding establishment. The pest's main hosts are not grown in the EU. However, the fact that it attacks the North American Pinus echinata, P. elliottii and P. taeda in its Asian native area suggests a potential capacity to shift to pine species occurring in the EU territory. D. punctatus satisfies all the criteria that are within the remit of EFSA to assess for it to be regarded as a potential Union quarantine pest. Whether the Pinus commonly found in Europe could act as hosts is unknown but is fundamental, affecting the criteria of establishment and magnitude of impact.
Collapse
|
3
|
Bragard C, Baptista P, Chatzivassiliou E, Di Serio F, Gonthier P, Jaques Miret JA, Justesen AF, Magnusson CS, Milonas P, Navas‐Cortes JA, Parnell S, Potting R, Reignault PL, Stefani E, Thulke H, Van der Werf W, Vicent Civera A, Yuen J, Zappalà L, Grégoire J, Malumphy C, Kertesz V, Maiorano A, MacLeod A. Pest categorisation of Dendrolimus spectabilis. EFSA J 2022; 20:e07622. [PMID: 36381116 PMCID: PMC9647410 DOI: 10.2903/j.efsa.2022.7622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The EFSA Panel on Plant Health performed a pest categorisation of Dendrolimus spectabilis (Lepidoptera: Lasiocampidae), a moth, also known as the Japanese pine caterpillar, for the European Union (EU). D. spectabilis is native to China, Japan and Korea. Its larvae primarily feed on the needles of Pinus densiflora and P. thunbergii and can also feed on P. strobus, P. rigida, P. taeda and P. tabuliformis. The pest can have one or two generations per year; winter is mostly spent as fifth instar larvae in the soil. Adults emerge in July and August and females lay egg masses of 200-300 eggs on coniferous host needles. Natural enemies are described as significant factors of population density changes in Japan and the Republic of Korea. The pest can be detected visually, and there are morphological keys as well as molecular markers allowing identification. D. spectabilis could enter the EU, either as eggs, larvae or pupae in the foliage of plants for planting or cut branches, as larvae on wood with bark or as overwintering larvae in the litter of potted plants. However, Annex VI of Regulation 2019/2072 prohibits the introduction of D. spectabilis hosts from countries and areas where the pest occurs. D. spectabilis occurs in climatic zones that are found in the EU, and the fact that it attacks the North American P. strobus, P. taeda and P. rigida in its Asian native area suggests a potential to shift to local conifer species in the EU territory. There is uncertainty regarding the magnitude of economic and environmental impact of D. spectabilis on conifer species commonly occurring in the EU. Notwithstanding this uncertainty, D. spectabilis satisfies all the criteria that are within the remit of EFSA to assess for it to be regarded as a potential Union quarantine pest.
Collapse
|
4
|
Zhang S, Kong X, Zhang Z. Research Progress on the Dendrolimus spp. Pheromone: From Identification to Molecular Recognition. Front Cell Dev Biol 2022; 10:829826. [PMID: 35592247 PMCID: PMC9110853 DOI: 10.3389/fcell.2022.829826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/05/2022] [Indexed: 12/02/2022] Open
Abstract
Dendrolimus species (Lepidoptera, Lasiocampidae), are the most serious phytophagous pests of coniferous forests worldwide. Dendrolimus feed intensively on needles, leading to considerable economic loss and ecological damage. Notably, the outbreak of Dendrolimus is a somewhat periodic pattern, and those outbreaks cause rapid and large-scale destruction of pine forests, with those forests observed to look like “Fire without smoke”. Sex pheromones play an important role during insect mating and reproduction, and there has been extensive research into the pheromone of Dendrolimus. The pheromone components of several Dendrolimus have been identified, and functions of two most important pheromone recognition genes, pheromone-binding proteins (PBPs) and pheromone receptors (PRs), were clarified. The evolution of PBP gene sequences is in good agreement with the trends in structural changes of the sex pheromone components in several Dendrolimus species, and it is interesting that PRs of Dendrolimus spp. occupy a novel lineage of PRs tuned to Type I pheromones in Lepidoptera. We present the current state of research into the sex pheromone of these important forest pests and highlight the emerging topics, to clarify future urgent work into Dendrolimus.
Collapse
Affiliation(s)
- Sufang Zhang
- *Correspondence: Sufang Zhang, ; Xiangbo Kong, ; Zhen Zhang,
| | - Xiangbo Kong
- *Correspondence: Sufang Zhang, ; Xiangbo Kong, ; Zhen Zhang,
| | - Zhen Zhang
- *Correspondence: Sufang Zhang, ; Xiangbo Kong, ; Zhen Zhang,
| |
Collapse
|
5
|
Thummadi NB, Charutha S, Pal M, Manimaran P. Multifractal and cross-correlation analysis on mitochondrial genome sequences using chaos game representation. Mitochondrion 2021; 60:121-128. [PMID: 34375735 DOI: 10.1016/j.mito.2021.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 11/25/2022]
Abstract
We characterized the multifractality and power-law cross-correlation of mitochondrial genomes of various species through the recently developed method which combines the chaos game representation theory and 2D-multifractal detrended cross-correlation analysis. In the present paper, we analyzed 32 mitochondrial genomes of different species and the obtained results show that all the analyzed data exhibit multifractal nature and power-law cross-correlation behaviour. Further, we performed a cluster analysis from the calculated scaling exponents to identify the class affiliation and its outcome is represented as a dendrogram. We suggest that this integrative approach may help the researchers to understand the phylogeny of any kingdom with their varying genome lengths and also this approach may find applications in characterizing the protein sequences, mRNA sequences, next-generation sequencing, and drug development, etc.
Collapse
Affiliation(s)
- N B Thummadi
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500 046, India
| | - S Charutha
- School of Physics, University of Hyderabad, Gachibowli, Hyderabad 500 046, India
| | - Mayukha Pal
- ABB Ability Innovation Centre, Asea Brown Boveri Company, Hyderabad 500084, India
| | - P Manimaran
- School of Physics, University of Hyderabad, Gachibowli, Hyderabad 500 046, India.
| |
Collapse
|
6
|
The First Mitogenomes of the Subfamily Odontiinae (Lepidoptera, Crambidae) and Phylogenetic Analysis of Pyraloidea. INSECTS 2021; 12:insects12060486. [PMID: 34073787 PMCID: PMC8225131 DOI: 10.3390/insects12060486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 11/26/2022]
Abstract
Simple Summary The Odontiinae is a small group in the Pyraloidea comprised of 388 species in 88 genera, but externally, these moths are diverse, including heterogeneous maculation and a size range from 9 to 50 mm in total wingspan. The monophyly of Pyraloidea and the two families (Pyralidae and Crambidae) is well supported by phylogenetic analyses based on morphology and molecular data of multiple nuclear genes. However, only a few mito-phylogenetic analyses have been conducted and no mitogenome of Odontiinae species has been reported. Three complete mitogenomes of odontiine species were sequenced and analyzed for the first time herein. The results showed that Odontiinae mitogenomes shared similar genomic characters with other Pyraloidea. The phylogenetic analyses based on 13 PCGs of mitogenomes confirmed the monophyly of Odontiinae and its position within Crambidae. Abstract The complete mitochondrial genomes of three species of Odontiinae were newly sequenced: Dausara latiterminalis Yoshiyasu, Heortia vitessoides (Moore), and Pseudonoorda nigropunctalis (Hampson). These circular and double-stranded mitogenomes vary from 15,084 bp to 15,237 bp in size, including 13 protein-coding genes (PCGs), two ribosomal RNA genes (rRNAs), and 22 transfer RNA genes (tRNAs) and an A + T-rich region. The nucleotide composition indicated a strong A/T bias. Most PCGs are initiated with an ATN codon and terminated by a codon of TAR. All tRNAs could be folded into the clover-leaf structure with the exception of trnS1 (AGN), in which the dihydrouridine (DHU) arm formed a simple loop, and the motif ‘ATAG’ and ‘ATTTA’ in the A + T-rich region was also founded. The phylogenomic analyses covering Odontiinae + 11 subfamilies of Pyraloidea were conducted. Similar topologies were generated from both Bayesian inference (BI) and maximum likelihood (ML) analyses based on the nucleotide and amino acid sequence data. There was some discrepancy in the sister-group relationship of Odontiinae and Glaphyriinae, and the relationships among the subfamilies in the ‘CAMMSS clade’ of the Crambidae. The results of this study suggest that mitogenomic data are useful for resolving the deep-level relationships of Pyraloidea and the topologies generated from amino acid data might be more realistic and reliable. Moreover, more mitogenomic taxon sampling and larger scale analyses with more genes or a combination of mitogenomic and nuclear genes are needed to reconstruct a comprehensive framework of the pyraloid phylogeny.
Collapse
|
7
|
Li J, Lv Q, Zhang XM, Han HL, Zhang AB. Characterization and Phylogenetic Analysis of the Complete Mitochondrial Genome of Laelia suffusa (Lepidoptera: Erebidae, Lymantriinae). JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:5. [PMID: 33428744 PMCID: PMC7799433 DOI: 10.1093/jisesa/ieaa138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Indexed: 06/02/2023]
Abstract
In this study, the complete mitochondrial genome of a white tussock moth, Laelia suffusa (Walker, 1855) (Lepidoptera: Erebidae, Lymantriinae), was sequenced and annotated. The genome sequence was 15,502 bp in length and comprised 13 PCGs, 2 rRNAs, 22 tRNAs, and a single noncoding control region (CR). The nucleotide composition of the genome was highly A + T biased, accounting for 79.04% of the whole genome and with a slightly positive AT skewness (0.015). Comparing the gene order with the basal species of Lepidoptera, a typical trnM rearrangement was detected in the mitogenome of L. suffusa. Besides, the trnM rearrangement was found at the head of trnI and trnQ, rather than at the back. The 13 PCGs used ATN as their start codons, except for the cox1 which used CGA. Out of the 22 tRNAs, only 1 tRNA (trnS1) failed to fold in a typical cloverleaf secondary structure. The conserved motif 'ATAGA + poly-T' was detected at the start of the control region which was similar to other Lepidoptera species. In total, 10 overlapping regions and 19 intergenic spacers were identified, ranging from 1 to 41 and 2 to 73 bp, respectively. Phylogenetic analysis showed that Lymantriinae was a monophyletic group with a high support value and L. suffusa was closely related to tribe Orgyiini (Erebidae, Lymantriinae). Moreover, the phylogenetic relationship of Noctuoidea (Lepidoptera) species was reconstructed using two datasets (13 PCGs and 37 genes) and these supported the topology of (Notodontidae + (Erebidae + (Nolidae + (Euteliidae + Noctuidae)))).
Collapse
Affiliation(s)
- Jing Li
- College of Life Sciences, Capital Normal University, Beijing, P. R. China
| | - Qing Lv
- College of Life Sciences, Capital Normal University, Beijing, P. R. China
| | - Xiao-man Zhang
- College of Life Sciences, Capital Normal University, Beijing, P. R. China
| | - Hui-lin Han
- School of Forestry, Northeast Forestry University, Harbin Heilongjiang, P. R. China
| | - Ai-bing Zhang
- College of Life Sciences, Capital Normal University, Beijing, P. R. China
| |
Collapse
|
8
|
Zhang S, Shen S, Peng J, Zhou X, Kong X, Ren P, Liu F, Han L, Zhan S, Huang Y, Zhang A, Zhang Z. Chromosome‐level genome assembly of an important pine defoliator,
Dendrolimus punctatus
(Lepidoptera; Lasiocampidae). Mol Ecol Resour 2020; 20:1023-1037. [DOI: 10.1111/1755-0998.13169] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/29/2020] [Accepted: 04/09/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Sufang Zhang
- Key Laboratory of Forest Protection of State Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection Chinese Academy of Forestry Beijing China
| | - Sifan Shen
- Key Laboratory of Forest Protection of State Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection Chinese Academy of Forestry Beijing China
| | - Jiong Peng
- Nextomics Biosciences Institute Wuhan China
| | - Xin Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health College of Plant Protection China Agricultural University Beijing China
| | - Xiangbo Kong
- Key Laboratory of Forest Protection of State Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection Chinese Academy of Forestry Beijing China
| | | | - Fu Liu
- Key Laboratory of Forest Protection of State Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection Chinese Academy of Forestry Beijing China
| | | | - Shuai Zhan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences Chinese Academy of Sciences Shanghai China
| | - Yongping Huang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences Chinese Academy of Sciences Shanghai China
| | - Aibing Zhang
- College of Life Sciences Capital Normal University Beijing China
| | - Zhen Zhang
- Key Laboratory of Forest Protection of State Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection Chinese Academy of Forestry Beijing China
| |
Collapse
|