1
|
Wrońska AK, Kaczmarek A, Boguś MI, Kuna A. Lipids as a key element of insect defense systems. Front Genet 2023; 14:1183659. [PMID: 37359377 PMCID: PMC10289264 DOI: 10.3389/fgene.2023.1183659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
The relationship between insect pathogenic fungi and their insect hosts is a classic example of a co-evolutionary arms race between pathogen and target host: parasites evolve towards mechanisms that increase their advantage over the host, and the host increasingly strengthens its defenses. The present review summarizes the literature data describing the direct and indirect role of lipids as an important defense mechanism during fungal infection. Insect defense mechanisms comprise anatomical and physiological barriers, and cellular and humoral response mechanisms. The entomopathogenic fungi have the unique ability to digest the insect cuticle by producing hydrolytic enzymes with chitin-, lipo- and proteolytic activity; besides the oral tract, cuticle pays the way for fungal entry within the host. The key factor in insect resistance to fungal infection is the presence of certain types of lipids (free fatty acids, waxes or hydrocarbons) which can promote or inhibit fungal attachment to cuticle, and might also have antifungal activity. Lipids are considered as an important source of energy, and as triglycerides are stored in the fat body, a structure analogous to the liver and adipose tissue in vertebrates. In addition, the fat body plays a key role in innate humoral immunity by producing a range of bactericidal proteins and polypeptides, one of which is lysozyme. Energy derived from lipid metabolism is used by hemocytes to migrate to the site of fungal infection, and for phagocytosis, nodulation and encapsulation. One polyunsaturated fatty acid, arachidonic acid, is used in the synthesis of eicosanoids, which play several crucial roles in insect physiology and immunology. Apolipoprotein III is important compound with antifungal activity, which can modulate insect cellular response and is considered as important signal molecule.
Collapse
Affiliation(s)
- Anna Katarzyna Wrońska
- Museum and Institute of Zoology, Polish Academy of Science, Warszawa, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Agata Kaczmarek
- Museum and Institute of Zoology, Polish Academy of Science, Warszawa, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Mieczysława Irena Boguś
- Museum and Institute of Zoology, Polish Academy of Science, Warszawa, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Kuna
- Independent Researcher, Warsaw, Poland
| |
Collapse
|
2
|
Lopez-Ortiz C, Edwards M, Natarajan P, Pacheco-Valenciana A, Nimmakayala P, Adjeroh DA, Sirbu C, Reddy UK. Peppers in Diet: Genome-Wide Transcriptome and Metabolome Changes in Drosophila melanogaster. Int J Mol Sci 2022; 23:9924. [PMID: 36077322 PMCID: PMC9455967 DOI: 10.3390/ijms23179924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
The habanero pepper (Capsicum chinense) is an increasingly important spice and vegetable crop worldwide because of its high capsaicin content and pungent flavor. Diets supplemented with the phytochemicals found in habanero peppers might cause shifts in an organism's metabolism and gene expression. Thus, understanding how these interactions occur can reveal the potential health effects associated with such changes. We performed transcriptomic and metabolomic analyses of Drosophila melanogaster adult flies reared on a habanero pepper diet. We found 539 genes/59 metabolites that were differentially expressed/accumulated in flies fed a pepper versus control diet. Transcriptome results indicated that olfactory sensitivity and behavioral responses to the pepper diet were mediated by olfactory and nutrient-related genes including gustatory receptors (Gr63a, Gr66a, and Gr89a), odorant receptors (Or23a, Or59a, Or82a, and Orco), and odorant-binding proteins (Obp28a, Obp83a, Obp83b, Obp93a, and Obp99a). Metabolome analysis revealed that campesterol, sitosterol, and sucrose were highly upregulated and azelaic acid, ethyl phosphoric acid, and citric acid were the major metabolites downregulated in response to the habanero pepper diet. Further investigation by integration analysis between transcriptome and metabolome data at gene pathway levels revealed six unique enriched pathways, including phenylalanine metabolism; insect hormone biosynthesis; pyrimidine metabolism; glyoxylate, and dicarboxylate metabolism; glycine, serine, threonine metabolism; and glycerolipid metabolism. In view of the transcriptome and metabolome findings, our comprehensive analysis of the response to a pepper diet in Drosophila have implications for exploring the molecular mechanism of pepper consumption.
Collapse
Affiliation(s)
- Carlos Lopez-Ortiz
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Mary Edwards
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Purushothaman Natarajan
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Armando Pacheco-Valenciana
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Padma Nimmakayala
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Donald A Adjeroh
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Cristian Sirbu
- Charleston Area Medical Center, Institute for Academic Medicine, Charleston, WV 25304, USA
- Department of Behavioral Medicine and Psychiatry, West Virginia University School of Medicine, Charleston Division, Charleston, WV 25304, USA
| | - Umesh K Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| |
Collapse
|
3
|
Riley WB, Rosa SP, Lima da Silveira LF. A comprehensive review and call for studies on firefly larvae. PeerJ 2021; 9:e12121. [PMID: 34616609 PMCID: PMC8459732 DOI: 10.7717/peerj.12121] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/16/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Fireflies (Coleoptera: Lampyridae) are commonly recognized by adult traits, such as a soft exoskeleton, lanterns and associated glow and flash patterns, but their larval stage is far less appreciated. However, fireflies spend most of their lives as larvae, and adults of most species rely solely on resources previously obtained. Therefore, studying the immature stages is imperative towards a comprehensive understanding of fireflies. This paper reviews and indicates key gaps in the biology of firefly larvae based on available literature. METHODOLOGY We reviewed the literature on firefly larvae to identify key issues and important taxonomic, geographic, and subject biases and gaps. RESULTS We found 376 papers that included information on firefly larvae. Only 139 species in 47 genera across eight of eleven lampyrid subfamilies have been studied during larval stages. These numbers reveal a staggering gap, since 94% of species and over half of the genera of fireflies were never studied in a crucial stage of their life cycle. Most studies on firefly larvae focus on two subfamilies (Luciolinae and Lampyrinae) in four zoogeographic regions (Sino-Japanese, Oriental, Nearctic, and Palearctic), whereas the other subfamilies and regions remain largely unstudied. These studies mainly dealt with morphology and behavior, other subjects remaining greatly understudied by comparison, including habitats, life cycle, physiology and interactions. CONCLUSIONS Together, these literature biases and gaps highlight how little is known about firefly larvae, and warmly invite basic and applied research, in the field and in the lab, to overcome these limitations and improve our understanding of firefly biology to better preserve them.
Collapse
Affiliation(s)
- William B. Riley
- Department of Biology, Western Carolina University, Cullowhee, NC, United States of America
| | - Simone Policena Rosa
- Instituto de Recursos Naturais, Universidade Federal de Itajubá, Itajubá, Minas Gerais, Brazil
| | | |
Collapse
|
4
|
Yang H, Xu D, Zhuo Z, Hu J, Lu B. SMRT sequencing of the full-length transcriptome of the Rhynchophorus ferrugineus (Coleoptera: Curculionidae). PeerJ 2020; 8:e9133. [PMID: 32509454 PMCID: PMC7246026 DOI: 10.7717/peerj.9133] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/14/2020] [Indexed: 12/23/2022] Open
Abstract
Background Red palm weevil Rhynchophorus ferrugineus (Coleoptera: Curculionidae) is one of the most destructive insects for palm trees in the world. However, its genome resources are still in the blank stage, which limits the study of molecular and growth development analysis. Methods In this study, we used PacBio Iso-Seq and Illumina RNA-seq to first generate transcriptome from three developmental stages of R. ferrugineus (pupa, 7th larva, female and male) to increase our understanding of the life cycle and molecular characteristics of R. ferrugineus. Results A total of 63,801 nonredundant full-length transcripts were generated with an average length of 2,964 bp from three developmental stages, including the 7th instar larva, pupa, female adult and male adult. These transcripts showed a high annotation rate in seven public databases, with 54,999 (86.20%) successfully annotated. Meanwhile, 2,184 alternative splicing (AS) events, 2,084 transcription factors (TFs), 66,230 simple sequence repeats (SSR) and 9,618 Long noncoding RNAs (lncRNAs) were identified. In summary, our results provide a new source of full-length transcriptional data and information for the further study of gene expression and genetics in R. ferrugineus.
Collapse
Affiliation(s)
- Hongjun Yang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Danping Xu
- Sichuan Provincial Key Laboratory of Agricultural Products Processing and Preservative, College of Food Science, Sichuan Agricultural University, Yaan, Sichuan, China
| | - Zhihang Zhuo
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, Hainan, China.,Key Laboratory of Integrated Pest Management on Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jiameng Hu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants of Hainan Province, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Baoqian Lu
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture China, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| |
Collapse
|