1
|
Simon DS, Yew CW, Kumar VS. Multiplexed Reverse Transcription Loop-Mediated Isothermal Amplification Coupled with a Nucleic Acid-Based Lateral Flow Dipstick as a Rapid Diagnostic Method to Detect SARS-CoV-2. Microorganisms 2023; 11:1233. [PMID: 37317207 PMCID: PMC10223058 DOI: 10.3390/microorganisms11051233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 06/16/2023] Open
Abstract
Due to the high reproduction rate of COVID-19, it is important to identify and isolate infected patients at the early stages of infection. The limitations of current diagnostic methods are speed, cost, and accuracy. Furthermore, new viral variants have emerged with higher rates of infectivity and mortality, many with mutations at various primer binding sites, which may evade detection via conventional PCR kits. Therefore, a rapid method that is sensitive, specific, and cost-effective is needed for a point-of-care molecular test. Accordingly, we developed a rapid molecular SARS-CoV-2 detection kit with high specificity and sensitivity, RT-PCR, taking advantage of the loop-mediated isothermal amplification (LAMP) technique. Four sets of six primers were designed based on conserved regions of the SARS-CoV-2 genome: two outer, two inner and two loop primers. Using the optimized protocol, SARS-CoV-2 genes were detected as quickly as 10 min but were most sensitive at 30 min, detecting as little as 100 copies of template DNA. We then coupled the RT-LAMP with a lateral flow dipstick (LFD) for multiplex detection. The LFD could detect two genic amplifications on a single strip, making it suitable for multiplexed detection. The development of a multiplexed RT-LAMP-LFD reaction on crude VTM samples would be suitable for the point-of-care diagnosis of COVID-19 in diagnostic laboratories as well as in private homes.
Collapse
Affiliation(s)
| | | | - Vijay Subbiah Kumar
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia; (D.S.S.); (C.-W.Y.)
| |
Collapse
|
2
|
Yang Z, Liu NY, Zhu Z, Xiao M, Zhong S, Xue Q, Nie L, Zhao J. Rapid and convenient detection of SARS-CoV-2 using a colorimetric triple-target reverse transcription loop-mediated isothermal amplification method. PeerJ 2022; 10:e14121. [PMID: 36248705 PMCID: PMC9558625 DOI: 10.7717/peerj.14121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/05/2022] [Indexed: 01/21/2023] Open
Abstract
Coronavirus Disease 2019 (COVID-19) caused by SARS-CoV-2 poses a significant threat to global public health. Early detection with reliable, fast, and simple assays is crucial to contain the spread of SARS-CoV-2. The real-time reverse transcription-polymerase chain reaction (RT-PCR) assay is currently the gold standard for SARS-CoV-2 detection; however, the reverse transcription loop-mediated isothermal amplification method (RT-LAMP) assay may allow for faster, simpler and cheaper screening of SARS-CoV-2. In this study, the triple-target RT-LAMP assay was first established to simultaneously detect three different target regions (ORF1ab, N and E genes) of SARS-CoV-2. The results revealed that the developed triplex RT-LAMP assay was able to detect down to 11 copies of SARS-CoV-2 RNA per 25 µL reaction, with greater sensitivity than singleplex or duplex RT-LAMP assays. Moreover, two different indicators, hydroxy naphthol blue (HNB) and cresol red, were studied in the colorimetric RT-LAMP assay; our results suggest that both indicators are suitable for RT-LAMP reactions with an obvious color change. In conclusion, our developed triplex colorimetric RT-LAMP assay may be useful for the screening of COVID-19 cases in limited-resource areas.
Collapse
Affiliation(s)
- Zhu Yang
- Department of Medical Microbiology and Immunology, Wannan Medical College, Wuhu, Anhui, China
| | - Nicole Y. Liu
- Department of Medical Microbiology and Immunology, Wannan Medical College, Wuhu, Anhui, China
| | - Zhiwei Zhu
- Department of Parasitology, Wannan Medical College, Wuhu, Anhui, China
| | - Minmin Xiao
- Clinical Laboratory, The Second People’s Hospital of Wuhu City, Wuhu, Anhui, China
| | - Shuzhi Zhong
- Department of Histology and Embryology, Wannan Medical College, Wuhu, Anhui, China
| | - Qiqi Xue
- Department of Parasitology, Wannan Medical College, Wuhu, Anhui, China
| | - Lina Nie
- Clinical Laboratory, The Second People’s Hospital of Wuhu City, Wuhu, Anhui, China
| | - Jinhong Zhao
- Department of Parasitology, Wannan Medical College, Wuhu, Anhui, China
| |
Collapse
|
3
|
Wu Y, Zhang Y, Zhu ZW, Xue QQ, Zou MH, Sun M, Li YY, Zhao JH. Rapid and Visual Detection of Toxoplasma gondii in Blood Samples from Pet Cats and Dogs by Loop-Mediated Isothermal Amplification. Vector Borne Zoonotic Dis 2022; 22:512-519. [PMID: 36201229 DOI: 10.1089/vbz.2022.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Toxoplasma gondii is an obligate intracellular parasite that invades nearly all nucleated cells of a broad spectrum of vertebrate hosts, and which may cause serious disease in immunocompromised patients, as well as in the immunologically incompetent fetus. This study aimed to establish a loop-mediated isothermal amplification (LAMP) technique to rapidly detect T. gondii in the blood infection by targeting the 529 bp repeat element of T. gondii. Methods: A turbidity monitoring system, together with visual reagent, was used to test the amplification result of the LAMP assay. In addition, the specificity and sensitivity of the LAMP assay were measured. Results: The results suggest that the successfully established LAMP assay profile can detect the DNA of T. gondii at 67°C within 40 min. The limit of detection of the LAMP assay was 101 copies/μL. No cross reaction occurred with Plasmodium vivax, Toxocara cati, Clonorchis sinensi, Spirometra mansoni or Cryptosporidium parvum. We validated the developed LAMP assay by detecting T. gondii in DNA extracted from 353 blood samples collected from domestic cats and dogs. The percentages of positive results in detecting these blood samples by LAMP and conventional PCR were 5.38% and 2.83%, respectively. Conclusions: Our findings show that the developed LAMP assay offers higher analytical sensitivity than conventional PCR and good analytical specificity, minimizes aerosol contamination, and can be applied to on-site rapid detection of T. gondii.
Collapse
Affiliation(s)
- Yan Wu
- School of Medical Laboratory Science, Wannan Medical College, Wuhu, China
| | - Yan Zhang
- School of Medical Laboratory Science, Wannan Medical College, Wuhu, China
| | - Zhi-Wei Zhu
- Department of Medical Parasitology, Wannan Medical College, Wuhu, China
| | - Qi-Qi Xue
- Department of Medical Parasitology, Wannan Medical College, Wuhu, China
| | - Ming-Hui Zou
- Department of Medical Parasitology, Wannan Medical College, Wuhu, China
| | - Ming Sun
- Tiantian Pet Hospital, Wuhu, China
| | - Yuan-Yuan Li
- Department of Medical Parasitology, Wannan Medical College, Wuhu, China
| | - Jin-Hong Zhao
- Department of Medical Parasitology, Wannan Medical College, Wuhu, China.,Anhui Provincial Key Laboratory of Biological Macromolecules, Wuhu, China
| |
Collapse
|
4
|
Yasui R, Matsui A, Sekine K, Okamoto S, Taniguchi H. Highly Sensitive Detection of Human Pluripotent Stem Cells by Loop-Mediated Isothermal Amplification. Stem Cell Rev Rep 2022; 18:2995-3007. [PMID: 35661077 PMCID: PMC9622575 DOI: 10.1007/s12015-022-10402-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2022] [Indexed: 11/24/2022]
Abstract
For safe regenerative medicines, contaminated or remaining tumorigenic undifferentiated cells in cell-derived products must be rigorously assessed through sensitive assays. Although in vitro nucleic acid tests offer particularly sensitive tumorigenicity-associated assays, the human pluripotent stem cell (hPSC) detectability is partly constrained by the small input amount of RNA per test. To overcome this limitation, we developed reverse transcription loop-mediated isothermal amplification (RT-LAMP) assays that are highly gene specific and robust against interfering materials. LAMP could readily assay microgram order of input sample per test and detected an equivalent model of 0.00002% hiPSC contamination in a simple one-pot reaction. For the evaluation of cell-derived total RNA, RT-LAMP detected spiked-in hPSCs among hPSC-derived trilineage cells utilizing multiple pluripotency RNAs. We also developed multiplex RT-LAMP assays and further applied for in situ cell imaging, achieving specific co-staining of pluripotency proteins and RNAs. Our attempts uncovered the utility of RT-LAMP approaches for tumorigenicity-associated assays, supporting practical applications of regenerative medicine.
Collapse
Affiliation(s)
- Ryota Yasui
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, 236-0004, Japan
- Fundamental Research Laboratory, Eiken Chemical Co., Ltd., Nogi, Tochigi, 329-0114, Japan
| | - Atsuka Matsui
- Biochemical Research Laboratory, Eiken Chemical Co., Ltd., Ohtawara, Tochigi, 324-0036, Japan
| | - Keisuke Sekine
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, 236-0004, Japan.
- Laboratory of Cancer Cell Systems, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Satoshi Okamoto
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, 236-0004, Japan
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Hideki Taniguchi
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, 236-0004, Japan.
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|