1
|
Yang Z, Jiang B, Xu J, McNamara ME. Cellular structure of dinosaur scales reveals retention of reptile-type skin during the evolutionary transition to feathers. Nat Commun 2024; 15:4063. [PMID: 38773066 PMCID: PMC11109146 DOI: 10.1038/s41467-024-48400-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/30/2024] [Indexed: 05/23/2024] Open
Abstract
Fossil feathers have transformed our understanding of integumentary evolution in vertebrates. The evolution of feathers is associated with novel skin ultrastructures, but the fossil record of these changes is poor and thus the critical transition from scaled to feathered skin is poorly understood. Here we shed light on this issue using preserved skin in the non-avian feathered dinosaur Psittacosaurus. Skin in the non-feathered, scaled torso is three-dimensionally replicated in silica and preserves epidermal layers, corneocytes and melanosomes. The morphology of the preserved stratum corneum is consistent with an original composition rich in corneous beta proteins, rather than (alpha-) keratins as in the feathered skin of birds. The stratum corneum is relatively thin in the ventral torso compared to extant quadrupedal reptiles, reflecting a reduced demand for mechanical protection in an elevated bipedal stance. The distribution of the melanosomes in the fossil skin is consistent with melanin-based colouration in extant crocodilians. Collectively, the fossil evidence supports partitioning of skin development in Psittacosaurus: a reptile-type condition in non-feathered regions and an avian-like condition in feathered regions. Retention of reptile-type skin in non-feathered regions would have ensured essential skin functions during the early, experimental stages of feather evolution.
Collapse
Affiliation(s)
- Zixiao Yang
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.
- Environmental Research Institute, University College Cork, Cork, Ireland.
| | - Baoyu Jiang
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China
| | - Jiaxin Xu
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing, China
| | - Maria E McNamara
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
2
|
Lacerda MBS, Bittencourt JS, Hutchinson JR. Reconstruction of the pelvic girdle and hindlimb musculature of the early tetanurans Piatnitzkysauridae (Theropoda, Megalosauroidea). J Anat 2024; 244:557-593. [PMID: 38037880 PMCID: PMC10941590 DOI: 10.1111/joa.13983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023] Open
Abstract
Piatnitzkysauridae were Jurassic theropods that represented the earliest diverging branch of Megalosauroidea, being one of the earliest lineages to have evolved moderate body size. This clade's typical body size and some unusual anatomical features raise questions about locomotor function and specializations to aid in body support; and other palaeobiological issues. Biomechanical models and simulations can illuminate how extinct animals may have moved, but require anatomical data as inputs. With a phylogenetic context, osteological evidence, and neontological data on anatomy, it is possible to infer the musculature of extinct taxa. Here, we reconstructed the hindlimb musculature of Piatnitzkysauridae (Condorraptor, Marshosaurus, and Piatnitzkysaurus). We chose this clade for future usage in biomechanics, for comparisons with myological reconstructions of other theropods, and for the resulting evolutionary implications of our reconstructions; differential preservation affects these inferences, so we discuss these issues as well. We considered 32 muscles in total: for Piatnitzkysaurus, the attachments of 29 muscles could be inferred based on the osteological correlates; meanwhile, in Condorraptor and Marshosaurus, we respectively inferred 21 and 12 muscles. We found great anatomical similarity within Piatnitzkysauridae, but differences such as the origin of M. ambiens and size of M. caudofemoralis brevis are present. Similarities were evident with Aves, such as the division of the M. iliofemoralis externus and M. iliotrochantericus caudalis and a broad depression for the M. gastrocnemius pars medialis origin on the cnemial crest. Nevertheless, we infer plesiomorphic features such as the origins of M. puboischiofemoralis internus 1 around the "cuppedicus" fossa and M. ischiotrochantericus medially on the ischium. As the first attempt to reconstruct muscles in early tetanurans, our study allows a more complete understanding of myological evolution in theropod pelvic appendages.
Collapse
Affiliation(s)
- Mauro B. S. Lacerda
- Structure and Motion Laboratory, Department of Comparative Biomedical SciencesThe Royal Veterinary CollegeHatfieldUK
- Pós‐Graduação em ZoologiaInstituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Jonathas S. Bittencourt
- Departamento de GeologiaInstituto de Geociências, Universidade Federal de Minas GeraisBelo HorizonteBrazil
| | - John R. Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical SciencesThe Royal Veterinary CollegeHatfieldUK
| |
Collapse
|
3
|
Mooney ED, Maho T, Philp RP, Bevitt JJ, Reisz RR. Paleozoic cave system preserves oldest-known evidence of amniote skin. Curr Biol 2024; 34:417-426.e4. [PMID: 38215745 DOI: 10.1016/j.cub.2023.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/29/2023] [Accepted: 12/05/2023] [Indexed: 01/14/2024]
Abstract
The richest and most diverse assemblage of early terrestrial tetrapods is preserved within the infilled cave system of Richards Spur, Oklahoma (289-286 Mya1). Some of the oldest-known terrestrial amniotes2,3 are exquisitely preserved here because of early impregnation and encasement of organic material by oil-seep hydrocarbons within rapidly deposited clay-rich cave sediments under toxic anoxic conditions.4 This phenomenon has also afforded the preservation of exceedingly rare integumentary soft tissues, reported here, providing critical first evidence into the anatomical changes marking the transition from the aquatic and semiaquatic lifestyles of anamniotes to the fully terrestrial lifestyles of early amniotes. This is the first record of a skin-cast fossil (3D carbonization of the skin proper) from the Paleozoic Era and the earliest known occurrence of epidermal integumentary structures. We also report on several compression fossils (carbonized skin impressions), all demonstrating similar external morphologies to extant crocodiles. A variety of previously unknown ossifications, as well as what are likely palpebral ossifications of the deeper dermis layer of the skin, are also documented. These fossils also serve as invaluable references for paleontological reconstructions. Chromatographic analysis of extractable hydrocarbons from bone and cave samples indicates that the source rock is the Devonian age Woodford Shale. Hydrocarbons derived from ancient marine organisms interacting with geologically younger terrestrial vertebrates have therefore resulted in the oldest-known preservation of amniote skin proper.
Collapse
Affiliation(s)
- Ethan D Mooney
- Dinosaur Evolution Research Center, International Center of Future Science, Jilin University, 2699 Qianjin Str., Changchun, Jilin Province 130012, China; Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga L5L1C6, Ontario, Canada.
| | - Tea Maho
- Dinosaur Evolution Research Center, International Center of Future Science, Jilin University, 2699 Qianjin Str., Changchun, Jilin Province 130012, China; Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga L5L1C6, Ontario, Canada.
| | - R Paul Philp
- School of Geosciences, University of Oklahoma, 1000 Asp Avenue, Norman 73019, Oklahoma, USA
| | - Joseph J Bevitt
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, New Illawarra Rd., Lucas Heights 2234, New South Wales, Australia
| | - Robert R Reisz
- Dinosaur Evolution Research Center, International Center of Future Science, Jilin University, 2699 Qianjin Str., Changchun, Jilin Province 130012, China; Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd., Mississauga L5L1C6, Ontario, Canada.
| |
Collapse
|
4
|
Drumheller SK, Boyd CA, Barnes BMS, Householder ML. Biostratinomic alterations of an Edmontosaurus "mummy" reveal a pathway for soft tissue preservation without invoking "exceptional conditions". PLoS One 2022; 17:e0275240. [PMID: 36223345 PMCID: PMC9555629 DOI: 10.1371/journal.pone.0275240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/12/2022] [Indexed: 11/05/2022] Open
Abstract
Removal or protection from biostratinomic agents of decomposition, such as predators and scavengers, is widely seen as a requirement for high-quality preservation of soft tissues in the fossil record. In this context, extremely rapid burial is an oft-cited mechanism for shielding remains from degradation, but not all fossils fit nicely into this paradigm. Dinosaurian mummies in particular seemingly require two mutually exclusive taphonomic processes to preserve under that framework: desiccation and rapid burial. Here we present a recently prepared Edmontosaurus mummy that reveals an alternate fossilization pathway for resistant soft tissues (e.g., skin and nails). While the skin on this specimen is well-preserved in three dimensions and contains biomarkers, it is deflated and marked by the first documented examples of injuries consistent with carnivore activity on dinosaurian soft tissue during the perimortem interval. Incomplete scavenging of the carcass provided a route for the gases, fluids, and microbes associated with decomposition to escape, allowing more durable soft tissues to persist through the weeks to months required for desiccation prior to entombment and fossilization. This pathway is consistent with actualistic observations and explains why dinosaurian skin, while rare, is more commonly preserved than expected if extreme circumstances were required for its preservation. More broadly, our assumptions guide specimen collection and research, and the presence of soft tissues and biomolecules in fossils that demonstrably were not rapidly buried, such as this mummy, suggests that such types of evidence may be substantially more common than previously assumed.
Collapse
Affiliation(s)
- Stephanie K. Drumheller
- Department of Earth and Planetary Sciences, University of Tennessee–Knoxville, Knoxville, Tennessee, United States of America
- * E-mail: (SKD); (CAB)
| | - Clint A. Boyd
- Fossil Resource Management Program, North Dakota Geological Survey, Bismarck, North Dakota, United States of America
- * E-mail: (SKD); (CAB)
| | - Becky M. S. Barnes
- Fossil Resource Management Program, North Dakota Geological Survey, Bismarck, North Dakota, United States of America
| | - Mindy L. Householder
- State Historical Society of North Dakota, Bismarck, North Dakota, United States of America
| |
Collapse
|
5
|
Siljeström S, Neubeck A, Steele A. Detection of porphyrins in vertebrate fossils from the Messel and implications for organic preservation in the fossil record. PLoS One 2022; 17:e0269568. [PMID: 35767560 PMCID: PMC9242450 DOI: 10.1371/journal.pone.0269568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/24/2022] [Indexed: 11/30/2022] Open
Abstract
Organic molecules preserved in fossils provide a wealth of new information about ancient life. The discovery of almost unaltered complex organic molecules in well-preserved fossils raise the question of how common such occurrences are in the fossil record, how to differentiate between endogenous and exogenous sources for the organic matter and what promotes such preservation. The aim of this study was the in-situ analysis of a well-preserved vertebrate fossil from 48 Ma Eocene sediments in the Messel pit, Germany for preservation of complex biomolecules. The fossil was characterized using a variety of techniques including time-of-flight secondary ion mass spectrometry (ToF-SIMS), scanning electron microscopy/energy dispersive x-ray spectroscopy (SEM/EDX), x-ray diffraction (XRD) and Raman spectroscopy. A suite of organic molecules was detected, including porphyrins, which given the context of the detected signal are most probably diagenetically altered heme originating from the fossil though a microbial contribution cannot be completely ruled out. Diagenetic changes to the porphyrin structure were observed that included the exchange of the central iron by nickel. Further analyses on the geochemistry of the fossil and surrounding sediments showed presence of pyrite and aluminosilicates, most likely clay. In addition, a carbonate and calcium phosphate dominated crust has formed around the fossil. This suggests that several different processes are involved in the preservation of the fossil and the organic molecules associated with it. Similar processes seem to have also been involved in preservation of heme in fossils from other localities.
Collapse
Affiliation(s)
- Sandra Siljeström
- Department of Methodology, Textiles and Medical Technology, RISE Research Institutes of Sweden, Stockholm, Sweden
- * E-mail:
| | - Anna Neubeck
- Department of Earth Sciences, Uppsala University, Uppsala, Sweden
| | - Andrew Steele
- Carnegie Institution for Science, Earth and Planetary Laboratory, Washington, DC, United States of America
| |
Collapse
|
6
|
Newly detected data from Haestasaurus and review of sauropod skin morphology suggests Early Jurassic origin of skin papillae. Commun Biol 2022; 5:122. [PMID: 35145214 PMCID: PMC8831608 DOI: 10.1038/s42003-022-03062-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/21/2022] [Indexed: 11/24/2022] Open
Abstract
Discovered in 1852, the scaly skin belonging to Haestasaurus becklesii was the first to be described in any non-avian dinosaur. Accordingly, it has played a crucial role in the reconstruction of sauropod integument and dinosaurs more broadly. Here, we reassess this historic specimen using Laser-Stimulated Fluorescence (LSF), revealing extensive, previously unknown regions of skin that augment prior interpretations of its integumentary morphology and taphonomy. Under white light, polygonal–subrounded, convex scales are visible on one side of the block (‘side A’), but LSF reveals extensive smaller and more flattened scales, which are diagenetically fragmented, on the reverse block surface (‘side B’). Contrary to the prior interpretation that the visible scales are the epidermal undersides, the presence of convex, intrascale papilliform textures on side A suggests that the external skin surface is exposed. We define intrascale papillae and provide a review of sauropod skin morphology, which clarifies that intrascale papillae are unique to and widespread across stem Neosauropoda, and likely have an evolutionary origin in the Early Jurassic. Intrascale papillae may ultimately have been integral to the evolution of gigantism in this charismatic clade. Haestasaurus becklesii claims the crown as owner of the first non-avian dinosaur skin to ever be described. Using modern imaging approaches, and considering known fossil skin across the long-necked sauropod dinosaurs, an Early Jurassic origin of the papillae within their scales is suggested.
Collapse
|
7
|
Hendrickx C, Bell PR, Pittman M, Milner ARC, Cuesta E, O'Connor J, Loewen M, Currie PJ, Mateus O, Kaye TG, Delcourt R. Morphology and distribution of scales, dermal ossifications, and other non-feather integumentary structures in non-avialan theropod dinosaurs. Biol Rev Camb Philos Soc 2022; 97:960-1004. [PMID: 34991180 DOI: 10.1111/brv.12829] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022]
Abstract
Modern birds are typified by the presence of feathers, complex evolutionary innovations that were already widespread in the group of theropod dinosaurs (Maniraptoriformes) that include crown Aves. Squamous or scaly reptilian-like skin is, however, considered the plesiomorphic condition for theropods and dinosaurs more broadly. Here, we review the morphology and distribution of non-feathered integumentary structures in non-avialan theropods, covering squamous skin and naked skin as well as dermal ossifications. The integumentary record of non-averostran theropods is limited to tracks, which ubiquitously show a covering of tiny reticulate scales on the plantar surface of the pes. This is consistent also with younger averostran body fossils, which confirm an arthral arrangement of the digital pads. Among averostrans, squamous skin is confirmed in Ceratosauria (Carnotaurus), Allosauroidea (Allosaurus, Concavenator, Lourinhanosaurus), Compsognathidae (Juravenator), and Tyrannosauroidea (Santanaraptor, Albertosaurus, Daspletosaurus, Gorgosaurus, Tarbosaurus, Tyrannosaurus), whereas dermal ossifications consisting of sagittate and mosaic osteoderms are restricted to Ceratosaurus. Naked, non-scale bearing skin is found in the contentious tetanuran Sciurumimus, ornithomimosaurians (Ornithomimus) and possibly tyrannosauroids (Santanaraptor), and also on the patagia of scansoriopterygids (Ambopteryx, Yi). Scales are surprisingly conservative among non-avialan theropods compared to some dinosaurian groups (e.g. hadrosaurids); however, the limited preservation of tegument on most specimens hinders further interrogation. Scale patterns vary among and/or within body regions in Carnotaurus, Concavenator and Juravenator, and include polarised, snake-like ventral scales on the tail of the latter two genera. Unusual but more uniformly distributed patterning also occurs in Tyrannosaurus, whereas feature scales are present only in Albertosaurus and Carnotaurus. Few theropods currently show compelling evidence for the co-occurrence of scales and feathers (e.g. Juravenator, Sinornithosaurus), although reticulate scales were probably retained on the mani and pedes of many theropods with a heavy plumage. Feathers and filamentous structures appear to have replaced widespread scaly integuments in maniraptorans. Theropod skin, and that of dinosaurs more broadly, remains a virtually untapped area of study and the appropriation of commonly used techniques in other palaeontological fields to the study of skin holds great promise for future insights into the biology, taphonomy and relationships of these extinct animals.
Collapse
Affiliation(s)
- Christophe Hendrickx
- Unidad Ejecutora Lillo, CONICET-Fundación Miguel Lillo, 251 Miguel Lillo, San Miguel de Tucumán, Tucumán, 4000, Argentina
| | - Phil R Bell
- School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
| | - Michael Pittman
- Vertebrate Palaeontology Laboratory, Department of Earth Sciences, The University of Hong Kong, Pokfulam, Hong Kong, SAR, China.,Department of Earth Sciences, University College London, WC1E 6BT, United Kingdom
| | - Andrew R C Milner
- St. George Dinosaur Discovery Site at Johnson Farm, 2180 East Riverside Drive, St. George, UT, U.S.A
| | - Elena Cuesta
- Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Str. 10, Munich, 80333, Germany
| | - Jingmai O'Connor
- Field Museum of Natural History, 1400 S Lake Shore Drive, Chicago, IL, 60605, U.S.A
| | - Mark Loewen
- Department of Geology and Geophysics, University of Utah, Frederick Albert Sutton Building, 115 South 1460 East, Salt Lake City, UT, 84112, U.S.A.,Natural History Museum of Utah, 301 Wakara Way, Salt Lake City, UT, 84108, U.S.A
| | - Philip J Currie
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Octávio Mateus
- GeoBioTec, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal.,Museu da Lourinhã, 95 Rua João Luis de Moura, Lourinhã, 2530-158, Portugal
| | - Thomas G Kaye
- Foundation for Scientific Advancement, 7023 Alhambra Dr., Sierra Vista, AZ, 85650, U.S.A
| | - Rafael Delcourt
- Universidade Estadual de Campinas (UNICAMP), Instituto de Geociências, Cidade Universitária, Rua Carlos Gomes, 250, Campinas, SP, 13083-855, Brazil
| |
Collapse
|