1
|
Wang M, Feng G, Yang Z, Wu J, Liu B, Xu X, Nie G, Huang L, Zhang X. Genome-Wide Characterization of the Aux/IAA Gene Family in Orchardgrass and a Functional Analysis of DgIAA21 in Responding to Drought Stress. Int J Mol Sci 2023; 24:16184. [PMID: 38003372 PMCID: PMC10671735 DOI: 10.3390/ijms242216184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Drought stress is an important factor that reduces plant biomass production and quality. As one of the most important economic forage grasses, orchardgrass (Dactylis glomerata) has high drought tolerance. Auxin/indole-3-acetic acid (Aux/IAA) is one of the early responsive gene families of auxin and plays a key role in the response to drought stress. However, the characteristics of the Aux/IAA gene family in orchardgrass and their potential function in responding to drought stress remain unclear. Here, 30 Aux/IAA members were identified in orchardgrass. Segmental duplication may be an important driving force in the evolution of the Aux/IAA gene family in orchardgrass. Some Aux/IAA genes were induced by IAA, drought, salt, and temperature stresses, implying that these genes may play important roles in responding to abiotic stresses. Heterologous expression in yeast revealed that DgIAA21 can reduce drought tolerance. Similarly, the overexpression of DgIAA21 also reduced drought tolerance in transgenic Arabidopsis, which was supported by lower total chlorophyll content and relative water content as well as higher relative electrolyte leakage and malondialdehyde content (MDA) than Col-0 plants under drought conditions. The results of this study provided valuable insight into the function of DgIAAs in response to drought stress, which can be further used to improve forage grass breeding programs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.W.); (G.F.); (Z.Y.)
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.W.); (G.F.); (Z.Y.)
| |
Collapse
|
2
|
Wang J, Xue L, Zhang X, Hou Y, Zheng K, Fu D, Dong W. A New Function of MbIAA19 Identified to Modulate Malus Plants Dwarfing Growth. PLANTS (BASEL, SWITZERLAND) 2023; 12:3097. [PMID: 37687343 PMCID: PMC10490418 DOI: 10.3390/plants12173097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/05/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
The primary determinants of apple (Malus) tree architecture include plant height and internode length, which are the significant criteria for evaluating apple dwarf rootstocks. Plant height and internode length are predominantly governed by phytohormones. In this study, we aimed to assess the mechanisms underlying dwarfism in a mutant of Malus baccata. M. baccata dwarf mutant (Dwf) was previously obtained through natural mutation. It has considerably reduced plant height and internode length. A comparative transcriptome analysis of wild-type (WT) and Dwf mutant was performed to identify and annotate the differentially expressed genes responsible for the Dwf phenotype using RNA-seq and GO and KEGG pathway enrichment analyses. Multiple DEGs involved in hormone signaling pathways, particularly auxin signaling pathways, were identified. Moreover, the levels of endogenous indole-3-acetic acid (IAA) were lower in Dwf mutant than in WT. The Aux/IAA transcription factor gene MbIAA19 was downregulated in Dwf mutant due to a single nucleotide sequence change in its promoter. Genetic transformation assay demonstrated strong association between MbIAA19 and the dwarf phenotype. RNAi-IAA19 lines clearly exhibited reduced plant height, internode length, and endogenous IAA levels. Our study revealed that MbIAA19 plays a role in the regulation of dwarfism and endogenous IAA levels in M. baccata.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wenxuan Dong
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China; (J.W.); (L.X.); (X.Z.); (Y.H.); (K.Z.); (D.F.)
| |
Collapse
|
3
|
Kopecká R, Kameniarová M, Černý M, Brzobohatý B, Novák J. Abiotic Stress in Crop Production. Int J Mol Sci 2023; 24:ijms24076603. [PMID: 37047573 PMCID: PMC10095105 DOI: 10.3390/ijms24076603] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
The vast majority of agricultural land undergoes abiotic stress that can significantly reduce agricultural yields. Understanding the mechanisms of plant defenses against stresses and putting this knowledge into practice is, therefore, an integral part of sustainable agriculture. In this review, we focus on current findings in plant resistance to four cardinal abiotic stressors—drought, heat, salinity, and low temperatures. Apart from the description of the newly discovered mechanisms of signaling and resistance to abiotic stress, this review also focuses on the importance of primary and secondary metabolites, including carbohydrates, amino acids, phenolics, and phytohormones. A meta-analysis of transcriptomic studies concerning the model plant Arabidopsis demonstrates the long-observed phenomenon that abiotic stressors induce different signals and effects at the level of gene expression, but genes whose regulation is similar under most stressors can still be traced. The analysis further reveals the transcriptional modulation of Golgi-targeted proteins in response to heat stress. Our analysis also highlights several genes that are similarly regulated under all stress conditions. These genes support the central role of phytohormones in the abiotic stress response, and the importance of some of these in plant resistance has not yet been studied. Finally, this review provides information about the response to abiotic stress in major European crop plants—wheat, sugar beet, maize, potatoes, barley, sunflowers, grapes, rapeseed, tomatoes, and apples.
Collapse
Affiliation(s)
- Romana Kopecká
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Michaela Kameniarová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Jan Novák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| |
Collapse
|
4
|
Transcription Factor IAA27 Positively Regulates P Uptake through Promoted Adventitious Root Development in Apple Plants. Int J Mol Sci 2022; 23:ijms232214029. [PMID: 36430505 PMCID: PMC9695701 DOI: 10.3390/ijms232214029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Phosphate (P) deficiency severely limits the growth and production of plants. Adventitious root development plays an essential role in responding to low phosphorus stress for apple plants. However, the molecular mechanisms regulating adventitious root growth and development in response to low phosphorus stress have remained elusive. In this study, a mutation (C-T) in the coding region of the apple AUXIN/INDOLE-3-ACETIC ACID 27 (IAA27) gene was identified. MdIAA27T-overexpressing transgenic apple improved the tolerance to phosphorus deficiency, which grew longer and denser adventitious roots and presented higher phosphorous content than the control plants under low phosphorus conditions, while the overexpression of MdIAA27C displayed the opposite trend. Moreover, the heterologous overexpression of MdIAA27 in tobacco yielded the same results, supporting the aforementioned findings. In vitro and in vivo assays showed that MdIAA27 directly interacted with AUXIN RESPONSE FACTOR (ARF8), ARF26 and ARF27, which regulated Small Auxin-Up RNA 76 (MdSAUR76) and lateral organ boundaries domain 16 (MdLBD16) transcription. The mutation in IAA27 resulted in altered interaction modes, which in turn promoted the release of positive ARFs to upregulate SAUR76 and LBD16 expression in low phosphorus conditions. Altogether, our studies provide insights into how the allelic variation of IAA27 affects adventitious root development in response to low phosphorus stress.
Collapse
|
5
|
Zhang Y, Yu J, Xu X, Wang R, Liu Y, Huang S, Wei H, Wei Z. Molecular Mechanisms of Diverse Auxin Responses during Plant Growth and Development. Int J Mol Sci 2022; 23:12495. [PMID: 36293351 PMCID: PMC9604407 DOI: 10.3390/ijms232012495] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
The plant hormone auxin acts as a signaling molecule to regulate numerous developmental processes throughout all stages of plant growth. Understanding how auxin regulates various physiological and developmental processes has been a hot topic and an intriguing field. Recent studies have unveiled more molecular details into how diverse auxin responses function in every aspect of plant growth and development. In this review, we systematically summarized and classified the molecular mechanisms of diverse auxin responses, and comprehensively elaborated the characteristics and multilevel regulation mechanisms of the canonical transcriptional auxin response. On this basis, we described the characteristics and differences between different auxin responses. We also presented some auxin response genes that have been genetically modified in plant species and how their changes impact various traits of interest. Finally, we summarized some important aspects and unsolved questions of auxin responses that need to be focused on or addressed in future research. This review will help to gain an overall understanding of and some insights into the diverse molecular mechanisms of auxin responses in plant growth and development that are instrumental in harnessing genetic resources in molecular breeding of extant plant species.
Collapse
Affiliation(s)
- Yang Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jiajie Yu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xiuyue Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Ruiqi Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yingying Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Shan Huang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Zhigang Wei
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
6
|
Gou H, Nai G, Lu S, Ma W, Chen B, Mao J. Genome-wide identification and expression analysis of PIN gene family under phytohormone and abiotic stresses in Vitis Vinifera L. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1905-1919. [PMID: 36484025 PMCID: PMC9723067 DOI: 10.1007/s12298-022-01239-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/13/2022] [Accepted: 10/12/2022] [Indexed: 06/17/2023]
Abstract
The auxin efflux transport proteins PIN-formed (PIN) has wide adaptability to hormone and abiotic stress, but the response mechanism of PINs in grape remains unclear. In this study, 12 members of VvPINs were identified and distributed on 8 chromosomes. The PIN genes of five species were divided into two subgroups, and the similarity of exons/introns and motifs of VvPIN genes were found in the same subgroup. Meanwhile, according to the examination of conserved motifs, the motif 3 included the conserved structure NPNTY. The promoter region of VvPIN gene family contained various cis-acting elements, which were related to light, abiotic stress, and hormones which are essential for growth and development. Additionally, VvPIN1, VvPIN9, and VvPIN11 proteins simultaneously interacted with the ARF, ABC, PINOID, GBF1, and VIT_08s0007g09010. The results of qRT-PCR revealed that the majority of the VvPINs were highly induced by NAA, GA3, ABA, MeJA, SA, NaCl, low-temperature (4 ℃), and PEG treatments, and the results were consistent with the prediction of the cis-acting elements. Moreover, the expression profile and quantitative real-time PCR (qRT-PCR) demonstrated that VvPIN genes were expressed in roots, stems, and leaves. The subcellular localization of VvPIN1 in Nicotiana benthamiana revealed that VvPIN1 was localized at the plasma membrane. Collectively, this study revealed that PIN genes could respond to various abiotic stresses, and provided a framework for regulating the expression of PIN genes to enhance the resistance of the grape. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01239-8.
Collapse
Affiliation(s)
- Huimin Gou
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 Gansu Province People’s Republic of China
| | - Guojie Nai
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 Gansu Province People’s Republic of China
| | - Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 Gansu Province People’s Republic of China
| | - Weifeng Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 Gansu Province People’s Republic of China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 Gansu Province People’s Republic of China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 Gansu Province People’s Republic of China
| |
Collapse
|
7
|
Kurepa J, Smalle JA. Auxin/Cytokinin Antagonistic Control of the Shoot/Root Growth Ratio and Its Relevance for Adaptation to Drought and Nutrient Deficiency Stresses. Int J Mol Sci 2022; 23:ijms23041933. [PMID: 35216049 PMCID: PMC8879491 DOI: 10.3390/ijms23041933] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 01/19/2023] Open
Abstract
The hormones auxin and cytokinin regulate numerous aspects of plant development and often act as an antagonistic hormone pair. One of the more striking examples of the auxin/cytokinin antagonism involves regulation of the shoot/root growth ratio in which cytokinin promotes shoot and inhibits root growth, whereas auxin does the opposite. Control of the shoot/root growth ratio is essential for the survival of terrestrial plants because it allows growth adaptations to water and mineral nutrient availability in the soil. Because a decrease in shoot growth combined with an increase in root growth leads to survival under drought stress and nutrient limiting conditions, it was not surprising to find that auxin promotes, while cytokinin reduces, drought stress tolerance and nutrient uptake. Recent data show that drought stress and nutrient availability also alter the cytokinin and auxin signaling and biosynthesis pathways and that this stress-induced regulation affects cytokinin and auxin in the opposite manner. These antagonistic effects of cytokinin and auxin suggested that each hormone directly and negatively regulates biosynthesis or signaling of the other. However, a growing body of evidence supports unidirectional regulation, with auxin emerging as the primary regulatory component. This master regulatory role of auxin may not come as a surprise when viewed from an evolutionary perspective.
Collapse
|
8
|
He Y, Li Y, Yao Y, Zhang H, Wang Y, Gao J, Fan M. Overexpression of watermelon m 6A methyltransferase ClMTB enhances drought tolerance in tobacco by mitigating oxidative stress and photosynthesis inhibition and modulating stress-responsive gene expression. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:340-352. [PMID: 34688195 DOI: 10.1016/j.plaphy.2021.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/11/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
N6-methyladenosine (m6A) in RNA is a very important post-transcriptional modification mechanism in eukaryotes. It has been reported to have important regulatory roles in some stress responses in model plants, but there has been no research regarding m6A modifications in watermelon. In this study, we cloned and characterized m6A methyltransferase, ClMTB (mRNA adenosine methylase B, METTL14 human homolog protein) in watermelon. ClMTB expression could be weakly induced by drought stress as determined by the quantitative real-time PCR (qRT-PCR) and Promoter::GUS analyses. ClMTB over-expressed in tobacco plants increased drought tolerance via enhancing reactive oxygen species (ROS) scavenging system and alleviating photosynthesis inhibition under drought. Transcriptome profiles indicated the multiple hormone and stress-responsive genes were specifically induced in over-expressed ClMTB plants under drought conditions. These results suggest that ClMTB-mediated m6A modification serves as a positive regulatory factor of drought tolerance. This study is the first one to provide an understanding of the specific roles of ClMTB in watermelon adaptation to drought stress, and may also provide important insights into the signaling pathway mediated by m6A modification in response to stress conditions.
Collapse
Affiliation(s)
- Yanjun He
- Zhejiang Academy of Agricultural Sciences, Institute of Vegetables, Hangzhou, 310021, China
| | - Yulin Li
- Zhejiang Academy of Agricultural Sciences, Institute of Vegetables, Hangzhou, 310021, China; College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Yixiu Yao
- Zhejiang Academy of Agricultural Sciences, Institute of Vegetables, Hangzhou, 310021, China; College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Huiqing Zhang
- Zhejiang Academy of Agricultural Sciences, Institute of Vegetables, Hangzhou, 310021, China
| | - Yuhuan Wang
- Zhejiang Academy of Agricultural Sciences, Institute of Vegetables, Hangzhou, 310021, China; College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Jie Gao
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Min Fan
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China.
| |
Collapse
|
9
|
Lee Y, Do VG, Kim S, Kweon H, McGhie TK. Cold stress triggers premature fruit abscission through ABA-dependent signal transduction in early developing apple. PLoS One 2021; 16:e0249975. [PMID: 33836019 PMCID: PMC8034736 DOI: 10.1371/journal.pone.0249975] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/29/2021] [Indexed: 01/31/2023] Open
Abstract
Fruit abscission is a complex physiological process that is regulated by internal and environmental factors. During early development, apple fruit are exposed to extreme temperature fluctuations that are associated with premature fruit drop; however, their effect on fruit abscission is largely unknown. We hypothesized that fruit abscission is triggered by cold stress and investigated the molecular basis of premature fruit drop using RNA-Seq and metabolomics data from apple fruit undergoing abscission following cold stress in the field. Genes responsive to abscisic acid signaling and cell wall degradation were upregulated during abscission, consistent with the increased abscisic acid concentrations detected by liquid chromatography-mass spectrometry. We performed ex vivo cold shock experiments with excised tree subunits consisting of a branch, pedicel, and fruit. Abscission induction occurred in the cold-stressed subunits with concurrent upregulation of abscisic acid biosynthesis (MdNCED1) and metabolism (MdCYP707A) genes, and ethylene biosynthesis (MdACS1) and receptor (MdETR2) genes in the pedicel. Another key finding was the activation of cytoplasmic streaming in abscission-zone cells detected by electron microscopy. Our results provide a novel insight into the molecular basis of fruit abscission physiology in response to cold stress in apple.
Collapse
Affiliation(s)
- Youngsuk Lee
- Apple Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration, Gunwi, South Korea
- School of Biological Sciences, College of National Science, Seoul National University, Seoul, South Korea
- * E-mail:
| | - Van Giap Do
- Apple Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration, Gunwi, South Korea
| | - Seonae Kim
- Apple Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration, Gunwi, South Korea
| | - Hunjoong Kweon
- Apple Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration, Gunwi, South Korea
| | - Tony K. McGhie
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| |
Collapse
|
10
|
Huang D, Wang Q, Jing G, Ma M, Li C, Ma F. Overexpression of MdIAA24 improves apple drought resistance by positively regulating strigolactone biosynthesis and mycorrhization. TREE PHYSIOLOGY 2021; 41:134-146. [PMID: 32856070 DOI: 10.1093/treephys/tpaa109] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/10/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
Most land plant species have the ability to establish a symbiosis with arbuscular mycorrhizal (AM) fungi. These fungi penetrate into root cortical cells and form branched structures (known as arbuscules) for nutrient exchange. We cloned the MdIAA24 from apple (Malus domestica) following its up-regulation during AM symbiosis. Results demonstrate the positive impact of the overexpression (OE) of MdIAA24 in apple on AM colonization. We observed the strigolactone (SL) synthesis genes, including MdD27, MdCCD7, MdCCD8a, MdCCD8b and MdMAXa, to be up-regulated in the OE lines. Thus, the OE lines exhibited both a higher SL content and colonization rate. Furthermore, we observed that the OE lines were able to maintain better growth parameters under AM inoculation conditions. Under drought stress with the AM inoculation, the OE lines were less damaged, which was demonstrated by a higher relative water content, a lower relative electrolytic leakage, a greater osmotic adjustment, a higher reactive oxygen species scavenging ability, an improved gas exchange capacity and an increased chlorophyll fluorescence performance. Our findings demonstrate that the OE of MdIAA24 in apple positively regulates the synthesis of SL and the formation of arbuscules as a drought stress coping mechanism.
Collapse
Affiliation(s)
- Dong Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, No.3 Taicheng Road, Yangling 712100 Shaanxi, China
| | - Qian Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, No.3 Taicheng Road, Yangling 712100 Shaanxi, China
| | - Guangquan Jing
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, No.3 Taicheng Road, Yangling 712100 Shaanxi, China
| | - Mengnan Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, No.3 Taicheng Road, Yangling 712100 Shaanxi, China
| | - Chao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, No.3 Taicheng Road, Yangling 712100 Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, No.3 Taicheng Road, Yangling 712100 Shaanxi, China
| |
Collapse
|