1
|
Lindstrom A, Habib S, Dong S, Gong Y, Liu J, Calonje M, Stevenson D, Zhang S. Transcriptome sequencing data provide a solid base to understand the phylogenetic relationships, biogeography and reticulated evolution of the genus Zamia L. (Cycadales: Zamiaceae). ANNALS OF BOTANY 2024; 134:747-768. [PMID: 38900840 PMCID: PMC11560380 DOI: 10.1093/aob/mcae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND AND AIMS Cycads are a key lineage to understand the early evolution of seed plants and their response to past environmental changes. However, tracing the evolutionary trajectory of cycad species is challenging when the robust relationships at inter- or infrageneric level are not well resolved. METHODS Here, using 2901 single-copy nuclear genes, we explored the species relationships and gene flow within the second largest genus of cycads, i.e. Zamia, based on phylotranscriptomic analyses of 90 % extant Zamia species. Based on a well-resolved phylogenetic framework, we performed gene flow analyses, molecular dating and biogeographical reconstruction to examine the spatiotemporal evolution of Zamia. We also performed ancestral state reconstruction of a total of 62 traits of the genus to comprehensively investigate its morphological evolution. KEY RESULTS Zamia comprises seven major clades corresponding to seven distinct distribution areas in the Americas, with at least three reticulation nodes revealed in this genus. Extant lineages of Zamia initially diversified around 18.4-32.6 (29.14) million years ago in Mega-Mexico, and then expanded eastward into the Caribbean and southward into Central and South America. Ancestral state reconstruction revealed homoplasy in most of the morphological characters. CONCLUSIONS This study revealed congruent phylogenetic relationships from comparative methods/datasets, with some conflicts being the result of incomplete lineage sorting and ancient/recent hybridization events. The strong association between the clades and the biogeographic areas suggested that ancient dispersal events shaped the modern distribution pattern, and regional climatic factors may have resulted in the following in situ diversification. Climate cooling starting during the mid-Miocene is associated with the global expansion of Zamia to tropical South America that has dramatically driven lineage diversification in the New World flora, as well as the extinction of cycad species in the nowadays cooler regions of both hemispheres, as indicated by the fossil records.
Collapse
Affiliation(s)
- Anders Lindstrom
- Global Biodiversity Conservancy 144/124 Moo 3, Soi Bua Thong, Bangsalae, Sattahip, Chonburi, 20250, Thailand
| | - Sadaf Habib
- Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China
| | - Shanshan Dong
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China
| | - Yiqing Gong
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China
| | - Jian Liu
- Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | | | | | - Shouzhou Zhang
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China
| |
Collapse
|
2
|
Habib S, Gong Y, Dong S, Lindstrom A, William Stevenson D, Liu Y, Wu H, Zhang S. Phylotranscriptomics reveal the spatio-temporal distribution and morphological evolution of Macrozamia, an Australian endemic genus of Cycadales. ANNALS OF BOTANY 2022; 130:671-685. [PMID: 36111957 PMCID: PMC9670756 DOI: 10.1093/aob/mcac117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/14/2022] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND AIMS Cycads are regarded as an ancient lineage of living seed plants, and hold important clues to understand the early evolutionary trends of seed plants. The molecular phylogeny and spatio-temporal diversification of one of the species-rich genera of cycads, Macrozamia, have not been well reconstructed. METHODS We analysed a transcriptome dataset of 4740 single-copy nuclear genes (SCGs) of 39 Macrozamia species and two outgroup taxa. Based on concatenated (maximum parsimony, maximum likelihood) and multispecies coalescent analyses, we first establish a well-resolved phylogenetic tree of Macrozamia. To identify cyto-nuclear incongruence, the plastid protein coding genes (PCGs) from transcriptome data are extracted using the software HybPiper. Furthermore, we explore the biogeographical history of the genus and shed light on the pattern of floristic exchange between three distinct areas of Australia. Six key diagnostic characters are traced on the phylogenetic framework using two comparative methods, and infra-generic classification is investigated. KEY RESULTS The tree topologies of concatenated and multi-species coalescent analyses of SCGs are mostly congruent with a few conflicting nodes, while those from plastid PCGs show poorly supported relationships. The genus contains three major clades that correspond to their distinct distributional areas in Australia. The crown group of Macrozamia is estimated to around 11.80 Ma, with a major expansion in the last 5-6 Myr. Six morphological characters show homoplasy, and the traditional phenetic sectional division of the genus is inconsistent with this current phylogeny. CONCLUSIONS This first detailed phylogenetic investigation of Macrozamia demonstrates promising prospects of SCGs in resolving phylogenetic relationships within cycads. Our study suggests that Macrozamia, once widely distributed in Australia, underwent major extinctions because of fluctuating climatic conditions such as cooling and mesic biome disappearance in the past. The current close placement of morphologically distinct species in the phylogenetic tree may be related to neotenic events that occurred in the genus.
Collapse
Affiliation(s)
- Sadaf Habib
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yiqing Gong
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China
| | - Shanshan Dong
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China
| | - Anders Lindstrom
- Global Biodiversity Conservancy 144/124 Moo 3, Soi Bua Thong, Bangsalae, Sattahip, Chonburi 20250, Thailand
| | | | - Yang Liu
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China
| | - Hong Wu
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shouzhou Zhang
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, 518004, China
| |
Collapse
|
3
|
Huang S, Kang Z, Chen Z, Deng Y. Comparative Analysis of the Chloroplast Genome of Cardamine hupingshanensis and Phylogenetic Study of Cardamine. Genes (Basel) 2022; 13:2116. [PMID: 36421792 PMCID: PMC9690686 DOI: 10.3390/genes13112116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 05/04/2024] Open
Abstract
Cardamine hupingshanensis (K. M. Liu, L. B. Chen, H. F. Bai and L. H. Liu) is a perennial herbal species endemic to China with narrow distribution. It is known as an important plant for investigating the metabolism of selenium in plants because of its ability to accumulate selenium. However, the phylogenetic position of this particular species in Cardamine remains unclear. In this study, we reported the chloroplast genome (cp genome) for the species C. hupingshanensis and analyzed its position within Cardamine. The cp genome of C. hupingshanensis is 155,226 bp in length and exhibits a typical quadripartite structure: one large single copy region (LSC, 84,287 bp), one small single copy region (17,943 bp) and a pair of inverted repeat regions (IRs, 26,498 bp). Guanine-Cytosine (GC) content makes up 36.3% of the total content. The cp genome contains 111 unique genes, including 78 protein-coding genes, 29 tRNA genes and 4 rRNA genes. A total of 115 simple sequences repeats (SSRs) and 49 long repeats were identified in the genome. Comparative analyses among 17 Cardamine species identified the five most variable regions (trnH-GUG-psbA, ndhK-ndhC, trnW-CCA-trnP-UGG, rps11-rpl36 and rpl32-trnL-UAG), which could be used as molecular markers for the classification and phylogenetic analyses of various Cardamine species. Phylogenetic analyses based on 79 protein coding genes revealed that the species C. hupingshanensis is more closely related to the species C. circaeoides. This relationship is supported by their shared morphological characteristics.
Collapse
Affiliation(s)
- Sunan Huang
- Key Laboratory of Plant Resources Conservation & Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Zujie Kang
- Management Bureau of Hunan Hupingshan National Nature Reserve, Shimen 415300, China
| | - Zhenfa Chen
- Management Bureau of Hunan Hupingshan National Nature Reserve, Shimen 415300, China
| | - Yunfei Deng
- Key Laboratory of Plant Resources Conservation & Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
4
|
Meng YY, Xiang W, Wen Y, Huang DL, Cao KF, Zhu SD. Correlations between leaf economics, mechanical resistance and drought tolerance across 41 cycad species. ANNALS OF BOTANY 2022; 130:345-354. [PMID: 34871356 PMCID: PMC9486883 DOI: 10.1093/aob/mcab146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/04/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIMS We conducted a comprehensive analysis of the functional traits of leaves (leaflets) of cycads. The aim of this study was to clarify the functional divergence between the earlier origin Cycadaceae and the later differentiated Zamiaceae, and the differences in trait associations between cycads and angiosperms. METHODS We selected 20 Cycadaceae species and 21 Zamiaceae species from the same cycad garden in South China, and measured their leaf structure, economic traits, mechanical resistance (Fp) and leaf water potential at the turgor loss point (πtlp). In addition, we compiled a dataset of geographical distribution along with climatic variables for these cycad species, and some leaf traits of tropical-sub-tropical angiosperm woody species from the literature for comparison. KEY RESULTS The results showed significantly contrasting leaf trait syndromes between the two families, with Zamiaceae species exhibiting thicker leaves, higher carbon investments and greater Fp than Cycadaceae species. Leaf thickness (LT) and πtlp were correlated with mean climatic variables in their native distribution ranges, indicating their evolutionary adaptation to environmental conditions. Compared with the leaves of angiosperms, the cycad leaves were thicker and tougher, and more tolerant to desiccation. Greater Fp was associated with a higher structural investment in both angiosperms and cycads; however, cycads showed lower Fp at a given leaf mass per area or LT than angiosperms. Enhancement of Fp led to more negative πtlp in angiosperms, but the opposite trend was observed in cycads. CONCLUSIONS Our results reveal that variations in leaf traits of cycads are mainly influenced by taxonomy and the environment of their native range. We also demonstrate similar leaf functional associations in terms of economics, but different relationships with regard to mechanics and drought tolerance between cycads and angiosperms. This study expands our understanding of the ecological strategies and likely responses of cycads to future climate change.
Collapse
Affiliation(s)
| | | | | | - Dong-Liu Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi University, Nanning, China
| | - Kun-Fang Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi University, Nanning, China
| | | |
Collapse
|
5
|
Pecundo MH, Chang ACG, Chen T, dela Cruz TEE, Ren H, Li N. Full-Length 16S rRNA and ITS Gene Sequencing Revealed Rich Microbial Flora in Roots of Cycas spp. in China. Evol Bioinform Online 2021; 17:1176934321989713. [PMID: 33613025 PMCID: PMC7868495 DOI: 10.1177/1176934321989713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/30/2020] [Indexed: 11/30/2022] Open
Abstract
Cycads have developed a complex root system categorized either as normal or coralloid roots. Past literatures revealed that a great diversity of key microbes is associated with these roots. This recent study aims to comprehensively determine the diversity and community structure of bacteria and fungi associated with the roots of two Cycas spp. endemic to China, Cycas debaoensis Zhong & Chen and Cycas fairylakea D.Y. Wang using high-throughput amplicon sequencing of the full-length 16S rRNA (V1-V9 hypervariable) and short fragment ITS region. The total DNA from 12 root samples were extracted, amplified, sequenced, and analyzed. Resulting sequences were clustered into 61 bacteria and 2128 fungal OTUs. Analysis of community structure revealed that the coralloid roots were dominated mostly by the nitrogen-fixer Nostocaceae but also contain other non-diazotrophic bacteria. The sequencing of entire 16S rRNA gene identified four different strains of cyanobacteria under the heterocystous genera Nostoc and Desmonostoc. Meanwhile, the top bacterial families in normal roots were Xanthobacteraceae, Burkholderiaceae, and Bacillaceae. Moreover, a diverse fungal community was also found in the roots of cycads and the predominating families were Ophiocordycipitaceae, Nectriaceae, Bionectriaceae, and Trichocomaceae. Our results demonstrated that bacterial diversity in normal roots of C. fairylakea is higher in richness and abundance than C. debaoensis. On the other hand, a slight difference, albeit insignificant, was noted for the diversity of fungi among root types and host species as the number of shared taxa is relatively high (67%). Our results suggested that diverse microbes are present in roots of cycads which potentially interact together to support cycads survival. Our study provided additional knowledge on the microbial diversity and composition in cycads and thus expanding our current knowledge on cycad-microbe association. Our study also considered the possible impact of ex situ conservation on cyanobiont community of cycads.
Collapse
Affiliation(s)
- Melissa H Pecundo
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Fairy Lake Botanical Garden, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Aimee Caye G Chang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Fairy Lake Botanical Garden, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
| | - Tao Chen
- Fairy Lake Botanical Garden, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Thomas Edison E dela Cruz
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
| | - Hai Ren
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Nan Li
- Fairy Lake Botanical Garden, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Chang ACG, Bautista MAC, Zheng Y, Wan T, Chen T. Plastome structure and phylogeny of Gnetum luofuense C.Y. Cheng (Gnetaceae, Gnetales). Mitochondrial DNA B Resour 2020; 5:3369-3370. [PMID: 33458172 PMCID: PMC7783052 DOI: 10.1080/23802359.2020.1821818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
This article describes the complete chloroplast genome of Gnetum luofuense. The G. luofense plastome was 114,795 bp in length, containing a large single copy region (66,103 bp) and a small single copy region (9438 bp), separated by two inverted repeat regions (19,627 bp). The genome lost all ndh genes and contained 116 genes, including 68 protein-coding genes, 40 tRNA genes, and eight rRNA genes. The GC content was 33.3%, 12 genes all contained an intron, ycf3 gene contained two introns while rps12 was a transpliced gene. Phylogenetic analysis using 61 concatenated protein-coding genes suggests that G. luofuense with the rest of other gnetophytes were sister to or nested within all conifers.
Collapse
Affiliation(s)
- Aimee Caye G. Chang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, P. R. China
- Shenzhen Fairy Lake Botanical Garden, Chinese Academy of Sciences, Shenzhen, P. R. China
- Graduate School, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Mary Ann C. Bautista
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, P. R. China
- Shenzhen Fairy Lake Botanical Garden, Chinese Academy of Sciences, Shenzhen, P. R. China
- Graduate School, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Yan Zheng
- Shenzhen Fairy Lake Botanical Garden, Chinese Academy of Sciences, Shenzhen, P. R. China
| | - Tao Wan
- Shenzhen Fairy Lake Botanical Garden, Chinese Academy of Sciences, Shenzhen, P. R. China
- Graduate School, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Tao Chen
- Shenzhen Fairy Lake Botanical Garden, Chinese Academy of Sciences, Shenzhen, P. R. China
- Graduate School, University of Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|