1
|
Baraldo N, Buzzoni L, Pasti L, Cavazzini A, Marchetti N, Mancia A. miRNAs as Biomolecular Markers for Food Safety, Quality, and Traceability in Poultry Meat-A Preliminary Study. Molecules 2024; 29:748. [PMID: 38398499 PMCID: PMC10891583 DOI: 10.3390/molecules29040748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
In this study, the expression and abundance of two candidate chicken (Gallus gallus; gga) microRNAs (miRNAs, miR), gga-miR-21-5p (miR-21) and gga-miR-126-5p (miR-126), have been analyzed in order to identify biomarkers for the traceability and quality of poultry meat. Two breeds of broiler chickens were tested: the most common Ross308 (fast-growing) and the high-quality Ranger Gold (slow-growing). A preliminary analysis of the two miRNAs expressions was conducted across various tissues (liver, lung, spleen, skeletal muscle, and kidney), and the three tissues (lung, spleen, and muscle) with a higher expression were chosen for further analysis. Using quantitative reverse transcription polymerase chain reaction (RT-qPCR), the expression of miRNAs in the three tissues of a total of thirteen animals was determined. The results indicate that miR-126 could be a promising biomarker for the lung tissue in the Ranger Gold (RG) breed (p < 0.01), thus suggesting a potential applicability for tracing hybrids. RG exhibits a significantly higher miR-126 expression in the lung tissue compared to the Ross308 broilers (R308), an indication of greater respiratory capacity and, consequently, a higher oxidative metabolism of the fast-growing hybrid. During sampling, two R308 broilers presented some anomalies, including airsacculitis, hepatic steatosis, and enlarged spleen. The expression of miR-126 and miR-21 was compared in healthy animals and in those presenting anomalies. Chickens with airsacculitis and hepatic steatosis showed an up-regulation of miR-21 and miR-126 in the most commercially valuable tissue, the skeletal muscle or breast (p < 0.05).
Collapse
Affiliation(s)
- Nada Baraldo
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, 44121 Ferrara, Italy; (N.B.); (A.C.)
| | - Luna Buzzoni
- Department of Life Science and Biotechnologies, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy;
| | - Luisa Pasti
- Department of Environmental and Prevention Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy;
| | - Alberto Cavazzini
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, 44121 Ferrara, Italy; (N.B.); (A.C.)
- Council for Agricultural Research and Economics, via della Navicella 2/4, 00184 Rome, Italy
| | - Nicola Marchetti
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, 44121 Ferrara, Italy; (N.B.); (A.C.)
| | - Annalaura Mancia
- Department of Life Science and Biotechnologies, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy;
- Department of Biology and Marine Science, Marine Science Research Institute, 2800 University Blvd N, Jacksonville, FL 32211, USA
| |
Collapse
|
2
|
Chen G, Chen J, Qi L, Yin Y, Lin Z, Wen H, Zhang S, Xiao C, Bello SF, Zhang X, Nie Q, Luo W. Bulk and single-cell alternative splicing analyses reveal roles of TRA2B in myogenic differentiation. Cell Prolif 2024; 57:e13545. [PMID: 37705195 PMCID: PMC10849790 DOI: 10.1111/cpr.13545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/08/2023] [Accepted: 08/28/2023] [Indexed: 09/15/2023] Open
Abstract
Alternative splicing (AS) disruption has been linked to disorders of muscle development, as well as muscular atrophy. However, the precise changes in AS patterns that occur during myogenesis are not well understood. Here, we employed isoform long-reads RNA-seq (Iso-seq) and single-cell RNA-seq (scRNA-seq) to investigate the AS landscape during myogenesis. Our Iso-seq data identified 61,146 full-length isoforms representing 11,682 expressed genes, of which over 52% were novel. We identified 38,022 AS events, with most of these events altering coding sequences and exhibiting stage-specific splicing patterns. We identified AS dynamics in different types of muscle cells through scRNA-seq analysis, revealing genes essential for the contractile muscle system and cytoskeleton that undergo differential splicing across cell types. Gene-splicing analysis demonstrated that AS acts as a regulator, independent of changes in overall gene expression. Two isoforms of splicing factor TRA2B play distinct roles in myogenic differentiation by triggering AS of TGFBR2 to regulate canonical TGF-β signalling cascades differently. Our study provides a valuable transcriptome resource for myogenesis and reveals the complexity of AS and its regulation during myogenesis.
Collapse
Affiliation(s)
- Genghua Chen
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Jiahui Chen
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Lin Qi
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Yunqian Yin
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Zetong Lin
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Huaqiang Wen
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Shuai Zhang
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Chuanyun Xiao
- Human and Animal PhysiologyWageningen UniversityWageningenThe Netherlands
| | - Semiu Folaniyi Bello
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Xiquan Zhang
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Qinghua Nie
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Wen Luo
- College of Animal ScienceSouth China Agricultural UniversityGuangzhouGuangdongChina
- Guangdong Provincial Key Lab of Agro‐Animal Genomics and Molecular Breeding, Lingnan Guangdong Laboratory of Modern Agriculture & State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of AgricultureGuangzhouGuangdongChina
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of AgricultureSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
3
|
Bayraktar M, Durmuş M, Al-Shuhaib MBS. Identification of two novel SNPs in the myocyte enhancer factor 2B (MEF2B) gene and its association with growth traits in two breeds of Turkish sheep. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Wu P, He M, Zhang X, Zhou K, Zhang T, Xie K, Dai G, Wang J, Wang X, Zhang G. miRNA-seq analysis in skeletal muscle of chicken and function exploration of miR-24-3p. Poult Sci 2022; 101:102120. [PMID: 36113166 PMCID: PMC9483787 DOI: 10.1016/j.psj.2022.102120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/16/2022] [Accepted: 08/03/2022] [Indexed: 10/31/2022] Open
Abstract
The regulation of skeletal muscle growth and development in chicken is complex. MicroRNAs (miRNAs) have been found to play an important role in the process, and more research is needed to further understand the regulatory mechanism of miRNAs. In this study, leg muscles of Jinghai yellow chickens at 300 d with low body weight (slow-growing group) and high body weight (fast-growing group) were collected for miRNA sequencing (miRNA-seq) and Bioinformatics analysis revealed 12 differentially expressed miRNAs (DEMs) between the two groups. We predicted 150 target genes for the DEMs, and GO and KEGG pathway analysis showed the target genes of miR-24-3p and novel_miR_133 were most enriched in the terms related to growth and development. Moreover, networks of DEMs and target genes showed that miR-24-3p and novel_miR_133 were the 2 core miRNAs. Hence, miR-24-3p was selected for further functional exploration in chicken primary myoblasts (CPMs) with molecular biology technologies including qPCR, cell counting kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU) and immunofluorescence. When proliferating CPMs were transfected with miR-24-3p mimic, the expression of cyclin dependent kinase inhibitor 1A (P21) was up-regulated and both CCK-8 and EdU assays showed that the proliferation of CPMs was inhibited. However, when the inhibitor was transfected into the proliferating CPMs, the opposite results were found. In differentiated CPMs, transfection with miR-24-3p mimic resulted in up regulation of MYOD, MYOG and MYHC after 48 h. Myotube areas also increased significantly compared to the mimic negative control (NC) group. When treated with inhibitor, differentiation CPMs produced the opposite effects. Overall, we revealed 2 miRNAs (novel_miR_133 and miR-24-3p) significantly related with growth and development and further proved that miR-24-3p could suppress the proliferation and promote differentiation of CPMs. The results would facilitate understanding the effects of miRNAs on the growth and development of chickens at the post-transcriptional level and could also have an important guiding role in yellow-feathered chicken breeding.
Collapse
Affiliation(s)
- Pengfei Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Mingliang He
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Xinchao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Kaizhi Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Guojun Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Xinglong Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
5
|
Comparison of Selection Signatures between Korean Native and Commercial Chickens Using 600K SNP Array Data. Genes (Basel) 2021; 12:genes12060824. [PMID: 34072132 PMCID: PMC8230197 DOI: 10.3390/genes12060824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
Korean native chickens (KNCs) comprise an indigenous chicken breed of South Korea that was restored through a government project in the 1990s. The KNC population has not been developed well and has mostly been used to maintain purebred populations in the government research institution. We investigated the genetic features of the KNC population in a selection signal study for the efficient improvement of this breed. We used 600K single nucleotide polymorphism data sampled from 191 KNCs (NG, 38; NL, 29; NR, 52; NW, 39; and NY, 33) and 54 commercial chickens (Hy-line Brown, 10; Lohmann Brown, 10; Arbor Acres, 10; Cobb, 12; and Ross, 12). Haplotype phasing was performed using EAGLE software as the initial step for the primary data analysis. Pre-processed data were analyzed to detect selection signals using the ‘rehh’ package in R software. A few common signatures of selection were identified in KNCs. Most quantitative trait locus regions identified as candidate regions were associated with traits related to reproductive organs, eggshell characteristics, immunity, and organ development. Block patterns with high linkage disequilibrium values were observed for LPP, IGF11, LMNB2, ERBB4, GABRB2, NTM, APOO, PLOA1, CNTN1, NTSR1, DEF3, CELF1, and MEF2D genes, among regions with confirmed selection signals. NL and NW lines contained a considerable number of selective sweep regions related to broilers and layers, respectively. We recommend focusing on improving the egg and meat traits of KNC NL and NW lines, respectively, while improving multiple traits for the other lines.
Collapse
|