1
|
Rossi A, Asthana A, Riganti C, Sedrakyan S, Byers LN, Robertson J, Senger RS, Montali F, Grange C, Dalmasso A, Porporato PE, Palles C, Thornton ME, Da Sacco S, Perin L, Ahn B, McCully J, Orlando G, Bussolati B. Mitochondria Transplantation Mitigates Damage in an In Vitro Model of Renal Tubular Injury and in an Ex Vivo Model of DCD Renal Transplantation. Ann Surg 2023; 278:e1313-e1326. [PMID: 37450698 PMCID: PMC10631499 DOI: 10.1097/sla.0000000000006005] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
OBJECTIVES To test whether mitochondrial transplantation (MITO) mitigates damage in 2 models of acute kidney injury (AKI). BACKGROUND MITO is a process where exogenous isolated mitochondria are taken up by cells. As virtually any morbid clinical condition is characterized by mitochondrial distress, MITO may find a role as a treatment modality in numerous clinical scenarios including AKI. METHODS For the in vitro experiments, human proximal tubular cells were damaged and then treated with mitochondria or placebo. For the ex vivo experiments, we developed a non-survival ex vivo porcine model mimicking the donation after cardiac death renal transplantation scenario. One kidney was treated with mitochondria, although the mate organ received placebo, before being perfused at room temperature for 24 hours. Perfusate samples were collected at different time points and analyzed with Raman spectroscopy. Biopsies taken at baseline and 24 hours were analyzed with standard pathology, immunohistochemistry, and RNA sequencing analysis. RESULTS In vitro, cells treated with MITO showed higher proliferative capacity and adenosine 5'-triphosphate production, preservation of physiological polarization of the organelles and lower toxicity and reactive oxygen species production. Ex vivo, kidneys treated with MITO shed fewer molecular species, indicating stability. In these kidneys, pathology showed less damage whereas RNAseq analysis showed modulation of genes and pathways most consistent with mitochondrial biogenesis and energy metabolism and downregulation of genes involved in neutrophil recruitment, including IL1A, CXCL8, and PIK3R1. CONCLUSIONS MITO mitigates AKI both in vitro and ex vivo.
Collapse
Affiliation(s)
- Andrea Rossi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Amish Asthana
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC
- Department of Surgery, Section of Transplantation, Wake Forest School of Medicine, Winston Salem, NC
| | - Chiara Riganti
- Department of Oncology, University of Torino, University of Turin, Turin, Italy
| | - Sargis Sedrakyan
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles, Los Angeles, CA
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Lori Nicole Byers
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC
- Department of Surgery, Section of Transplantation, Wake Forest School of Medicine, Winston Salem, NC
| | - John Robertson
- Department of Biomedical Engineering and Mechanics, College of Engineering, Virginia Tech, Blacksburg, VA
- DialySensors Inc., Blacksburg, VA
| | - Ryan S. Senger
- DialySensors Inc., Blacksburg, VA
- Department of Biological Systems Engineering, College of Life Sciences and Agriculture, Virginia Tech, Blacksburg, VA
- Department of Chemical Engineering, College of Engineering, Virginia Tech, Blacksburg, VA
| | | | - Cristina Grange
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Alessia Dalmasso
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Paolo E. Porporato
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Chris Palles
- J. Crayton Pruitt Family, Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Matthew E. Thornton
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Stefano Da Sacco
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles, Los Angeles, CA
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Laura Perin
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles, Los Angeles, CA
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Bumsoo Ahn
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston Salem, NC
| | - James McCully
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Giuseppe Orlando
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC
- Department of Surgery, Section of Transplantation, Wake Forest School of Medicine, Winston Salem, NC
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| |
Collapse
|
2
|
Carswell W, Robertson JL, Senger RS. Raman Spectroscopic Detection and Quantification of Macro- and Microhematuria in Human Urine. APPLIED SPECTROSCOPY 2022; 76:273-283. [PMID: 35102755 DOI: 10.1177/00037028211060853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hematuria refers to the presence of blood in urine. Even in small amounts, it may be indicative of disease, ranging from urinary tract infection to cancer. Here, Raman spectroscopy was used to detect and quantify macro- and microhematuria in human urine samples. Anticoagulated whole blood was mixed with freshly collected urine to achieve concentrations of 0, 0.25, 0.5, 1, 2, 6, 10, and 20% blood/urine (v/v). Raman spectra were obtained at 785 nm and data analyzed using chemometric methods and statistical tests with the Rametrix toolboxes for Matlab. Goldindec and iterative smoothing splines with root error adjustment (ISREA) baselining algorithms were used in processing and normalization of Raman spectra. Rametrix was used to apply principal component analysis (PCA), develop discriminate analysis of principal component (DAPC) models, and to validate these models using external leave-one-out cross-validation (LOOCV). Discriminate analysis of principal component models were capable of detecting various levels of microhematuria in unknown urine samples, with prediction accuracies of 91% (using Goldindec spectral baselining) and 94% (using ISREA baselining). Partial least squares regression (PLSR) was then used to estimate/quantify the amount of blood (v/v) in a urine sample, based on its Raman spectrum. Comparing actual and predicted (from Raman spectral computations) hematuria levels, a coefficient of determination (R2) of 0.91 was obtained over all hematuria levels (0-20% v/v), and an R2 of 0.92 was obtained for microhematuria (0-1% v/v) specifically. Overall, the results of this preliminary study suggest that Raman spectroscopy and chemometric analyses can be used to detect and quantify macro- and microhematuria in unprocessed, clinically relevant urine specimens.
Collapse
Affiliation(s)
- William Carswell
- Department of Biological Systems Engineering, 1757Virginia Tech, Blacksburg, Virginia, USA
| | - John L Robertson
- Department of Biomedical Engineering and Mechanics, 1757Virginia Tech, Blacksburg, Virginia, USA
- DialySensors, Inc., Blacksburg, Virginia, USA
| | - Ryan S Senger
- Department of Biological Systems Engineering, 1757Virginia Tech, Blacksburg, Virginia, USA
- DialySensors, Inc., Blacksburg, Virginia, USA
- Department of Chemical Engineering, 1757Virginia Tech, Blacksburg, Virginia, USA
- Department of Surgery, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|