1
|
Corsini M, Cole HJ, Gomes DGE, Fristrup KM, Barber JR. Blended-red lighting partially mitigates the cost of light pollution for arthropods. Oecologia 2025; 207:26. [PMID: 39878880 PMCID: PMC11779773 DOI: 10.1007/s00442-025-05665-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/06/2025] [Indexed: 01/31/2025]
Abstract
Light pollution disrupts the natural dark-light rhythmicity of the world and alters the spectral composition of the nocturnal sky, with far-reaching impacts on natural systems. While the costs of light pollution are now documented across scales and taxa, community-level mitigations for arthropods remain unclear. To test two light pollution mitigation strategies, we replaced all 32 streetlights in the largest visitor center in Grand Teton National Park (Wyoming, USA) to allow wireless control over each luminaries' color and brightness. We captured fewer arthropods, across most Orders, in the blended-red light compared to white (3000 K). Interestingly, we found an effect of light brightness and color, suggesting that, overall, more arthropods were attracted by brighter, and white color hues compared to blended-red. Our findings provide valuable insights into the mitigation of artificial light at night, likely one of the primary drivers of global arthropod declines.
Collapse
Affiliation(s)
- Michela Corsini
- Department of Biological Sciences, Boise State University, Boise, ID, 83725, USA.
| | - Hunter J Cole
- Department of Biological Sciences, Boise State University, Boise, ID, 83725, USA
- Institute for Wildlife Studies, Arcata, CA, 95518, USA
| | - Dylan G E Gomes
- Department of Biological Sciences, Boise State University, Boise, ID, 83725, USA
- Current address: Forest and Rangeland Ecosystem Science Center, United States Geological Survey, Seattle, WA, 98195, USA
| | - Kurt M Fristrup
- Natural Sounds and Night Skies Division, National Park Service, Fort Collins, CO, 80525, USA
| | - Jesse R Barber
- Department of Biological Sciences, Boise State University, Boise, ID, 83725, USA
- Center for Biodiversity and Conservation, American Museum of Natural History, New York, NY, 10024, USA
| |
Collapse
|
2
|
Sanders D, Hirt MR, Brose U, Evans DM, Gaston KJ, Gauzens B, Ryser R. How artificial light at night may rewire ecological networks: concepts and models. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220368. [PMID: 37899020 PMCID: PMC10613535 DOI: 10.1098/rstb.2022.0368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/13/2023] [Indexed: 10/31/2023] Open
Abstract
Artificial light at night (ALAN) is eroding natural light cycles and thereby changing species distributions and activity patterns. Yet little is known about how ecological interaction networks respond to this global change driver. Here, we assess the scientific basis of the current understanding of community-wide ALAN impacts. Based on current knowledge, we conceptualize and review four major pathways by which ALAN may affect ecological interaction networks by (i) impacting primary production, (ii) acting as an environmental filter affecting species survival, (iii) driving the movement and distribution of species, and (iv) changing functional roles and niches by affecting activity patterns. Using an allometric-trophic network model, we then test how a shift in temporal activity patterns for diurnal, nocturnal and crepuscular species impacts food web stability. The results indicate that diel niche shifts can severely impact community persistence by altering the temporal overlap between species, which leads to changes in interaction strengths and rewiring of networks. ALAN can thereby lead to biodiversity loss through the homogenization of temporal niches. This integrative framework aims to advance a predictive understanding of community-level and ecological-network consequences of ALAN and their cascading effects on ecosystem functioning. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Dirk Sanders
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| | - Myriam R. Hirt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Ulrich Brose
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Darren M. Evans
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Kevin J. Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| | - Benoit Gauzens
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Remo Ryser
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, 07737 Jena, Germany
| |
Collapse
|
3
|
Nelsen DR, Corbit AG, Chuang A, Deitsch JF, Sitvarin MI, Coyle DR. Veni, vidi, vici? Future spread and ecological impacts of a rapidly expanding invasive predator population. Ecol Evol 2023; 13:e10728. [PMID: 38020683 PMCID: PMC10659957 DOI: 10.1002/ece3.10728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Economic and ecological consequences of invasive species make biological invasions an influential driver of global change. Monitoring the spread and impacts of non-native species is essential, but often difficult, especially during the initial stages of invasion. The Jorō spider, Trichonephila clavata (L. Koch, 1878, Araneae: Nephilidae), is a large-bodied orb weaver native to Asia, likely introduced to northern Georgia, U.S. around 2010. We investigated the nascent invasion of T. clavata by constructing species distribution models (SDMs) from crowd-sourced data to compare the climate T. clavata experiences in its native range to its introduced range. We found evidence that the climate of T. clavata's native range differs significantly from its introduced range. Species distribution models trained with observations from its native range predict that the most suitable habitats in North America occur north of its current introduced range. Consistent with SDM predictions, T. clavata appears to be spreading faster to the north than to the south. Lastly, we conducted surveys to investigate potential ecological impacts of T. clavata on the diversity of native orb weaving spiders. Importantly, Trichonephila clavata was the most common and abundant species observed in the survey, and was numerically dominant at half of the sites it was present in. Our models also suggest that there is lower native orb weaver species richness and diversity closer to where T. clavata was initially found and where it has been established the longest, though human population density complicates this finding. This early study is the first to forecast how widely this spider may spread in its introduced range and explore its potential ecological impacts. Our results add evidence that T. clavata is an invasive species and deserves much more ecological scrutiny.
Collapse
Affiliation(s)
- David R. Nelsen
- Biology and Allied HealthSouthern Adventist UniversityCollegedaleTennesseeUSA
| | - Aaron G. Corbit
- Biology and Allied HealthSouthern Adventist UniversityCollegedaleTennesseeUSA
| | - Angela Chuang
- Department of Entomology and NematologyUniversity of FloridaLake AlfredFloridaUSA
| | - John F. Deitsch
- Ecology and Evolutionary BiologyThe University of Texas at El PasoEl PasoTexasUSA
| | | | - David R. Coyle
- Forestry and Environmental ConservationClemson University College of Agriculture Forestry and Life SciencesClemsonSouth CarolinaUSA
| |
Collapse
|
4
|
The Jorō spider (Trichonephila clavata) in the southeastern U.S.: an opportunity for research and a call for reasonable journalism. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02914-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AbstractTrichonephila clavata, also known as the Jorō spider, was first discovered in Georgia, USA in 2014. Its arrival from Asia and subsequent range expansion across the southeastern U.S. has received much media coverage, spanning from factual to sensational. Here, we describe T. clavata's invasion potential and known invasive range, and review its biology, dispersal abilities, potential impacts, and management strategies. As of October 2022, T. clavata's range spans at least 120,000 km2, occurring across Georgia, South Carolina, North Carolina, and Tennessee, with additional reports in Alabama, Maryland, Oklahoma, and West Virginia. Its pattern of spread suggests it is primarily driven by natural dispersal mechanisms, such as ballooning, though human-mediated transport cannot be discounted. Like other large-bodied orb-weavers, T. clavata captures and feeds on flying insects and potentially other small animals, and we suggest thirteen co-occurring spider species that should be monitored for competition with T. clavata for resources and web-building sites. Since T. clavata is spreading across both natural and urban habitats, management options are limited. Overall, very little is known about this species in its new North American range, especially its impacts within this novel ecosystem. Thus, we advise journalists and experts alike against exaggerating its potential environmental impact or uncritical acceptance of the spider as ecologically harmless. Instead, T. clavata's rapid spread should be carefully monitored, and we should take a cautious, evidence-based approach when determining next steps.
Collapse
|
5
|
Heinen R. A spotlight on the phytobiome: Plant-mediated interactions in an illuminated world. Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2021.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Schmidtberg H, von Reumont BM, Lemke S, Vilcinskas A, Lüddecke T. Morphological Analysis Reveals a Compartmentalized Duct in the Venom Apparatus of the Wasp Spider ( Argiope bruennichi). Toxins (Basel) 2021; 13:toxins13040270. [PMID: 33918654 PMCID: PMC8070055 DOI: 10.3390/toxins13040270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022] Open
Abstract
Spiders are one of the most successful groups of venomous animals, but surprisingly few species have been examined in sufficient detail to determine the structure of their venom systems. To learn more about the venom system of the family Araneidae (orb-weavers), we selected the wasp spider (Argiope bruennichi) and examined the general structure and morphology of the venom apparatus by light microscopy. This revealed morphological features broadly similar to those reported in the small number of other spiders subject to similar investigations. However, detailed evaluation of the venom duct revealed the presence of four structurally distinct compartments. We propose that these subunits facilitate the expression and secretion of venom components, as previously reported for similar substructures in pit vipers and cone snails.
Collapse
Affiliation(s)
- Henrike Schmidtberg
- Institute for Insect Biotechnology, Justus Liebig University of Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany; (H.S.); (S.L.); (A.V.)
| | - Björn M. von Reumont
- Institute for Insect Biotechnology, Justus Liebig University of Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany; (H.S.); (S.L.); (A.V.)
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Correspondence: (B.M.v.R.); (T.L.)
| | - Sarah Lemke
- Institute for Insect Biotechnology, Justus Liebig University of Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany; (H.S.); (S.L.); (A.V.)
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus Liebig University of Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany; (H.S.); (S.L.); (A.V.)
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Gießen, Germany
| | - Tim Lüddecke
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Gießen, Germany
- Correspondence: (B.M.v.R.); (T.L.)
| |
Collapse
|
7
|
Gomes DGE, Hesselberg T, Barber JR. Phantom river noise alters orb‐weaving spider abundance, web size and prey capture. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dylan G. E. Gomes
- Department of Biological Sciences Boise State University Boise ID USA
| | | | - Jesse R. Barber
- Department of Biological Sciences Boise State University Boise ID USA
| |
Collapse
|
8
|
Giavi S, Blösch S, Schuster G, Knop E. Artificial light at night can modify ecosystem functioning beyond the lit area. Sci Rep 2020; 10:11870. [PMID: 32681056 PMCID: PMC7368033 DOI: 10.1038/s41598-020-68667-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 06/22/2020] [Indexed: 12/11/2022] Open
Abstract
Artificial light at night (ALAN) is a relatively new and rapidly increasing global change driver. While evidence on adverse effects of ALAN for biodiversity and ecosystem functioning is increasing, little is known on the spatial extent of its effects. We therefore tested whether ALAN can affect ecosystem functioning in areas adjacent to directly illuminated areas. We exposed two phytometer species to three different treatments of ALAN (sites directly illuminated, sites adjacent to directly illuminated sites, control sites without illumination), and we measured its effect on the reproductive output of both plant species. Furthermore, in one of the two plant species, we quantified pre-dispersal seed predation and the resulting relative reproductive output. Finally, under controlled condition in the laboratory, we assessed flower visitation and oviposition of the main seed predator in relation to light intensity. There was a trend for reduced reproductive output of one of the two plant species on directly illuminated sites, but not of the other. Compared to dark control sites, seed predation was significantly increased on dark sites adjacent to illuminated sites, which resulted in a significantly reduced relative reproductive output. Finally, in the laboratory, the main seed predator flew away from the light source to interact with its host plant in the darkest area available, which might explain the results found in the field. We conclude that ALAN can also affect ecosystem functioning in areas not directly illuminated, thereby having ecological consequences at a much larger scale than previously thought.
Collapse
Affiliation(s)
- Simone Giavi
- Institute of Ecology and Evolution, University of Bern, Baltzerstr. 6, 3012, Bern, Switzerland.,Agroscope, Agroecology and Environment, Reckenholzstrasse 191, 8046, Zürich, Switzerland
| | - Sina Blösch
- Institute of Ecology and Evolution, University of Bern, Baltzerstr. 6, 3012, Bern, Switzerland.,Bernese School of Agricultural, Forest and Food Sciences HAFL, Länggasse 85, 3052, Zollikofen, Switzerland
| | - Guido Schuster
- Department of Electrical Engineering, University of Applied Sciences of Eastern Switzerland, Oberseestrasse 10, 8640, Rapperswil, Switzerland
| | - Eva Knop
- Agroscope, Agroecology and Environment, Reckenholzstrasse 191, 8046, Zürich, Switzerland. .,Department of Evolutionary Biology and Environmental Studies, University of Zürich, Winterthurerstr. 190, 8057, Zürich, Switzerland.
| |
Collapse
|