1
|
Oslan SNH, Yusoff AH, Mazlan M, Lim SJ, Khoo JJ, Oslan SN, Ismail A. Comprehensive approaches for the detection of Burkholderia pseudomallei and diagnosis of melioidosis in human and environmental samples. Microb Pathog 2022; 169:105637. [PMID: 35710088 DOI: 10.1016/j.micpath.2022.105637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022]
Abstract
Melioidosis is endemic in Southeast Asia and northern Australia. The causative agent of melioidosis is a Gram-negative bacterium, Burkholderia pseudomallei. Its invasion can be fatal if melioidosis is not treated promptly. It is intrinsically resistant to a variety of antibiotics. In this paper, we present a comprehensive overview of the current trends on melioidosis cases, treatments, B. pseudomallei virulence factors, and molecular techniques to detect the bacterium from different samples. The clinical and microbial diagnosis methods of identification and detection of B. pseudomallei are commonly used for the rapid diagnosis and typing of strains, such as polymerase chain reaction or multi-locus sequence typing. The genotyping strategies and techniques have been constantly evolving to identify genomic loci linked to or associated with this human disease. More research strategies for detecting and controlling melioidosis should be encouraged and conducted to understand the current situation. In conclusion, we review existing diagnostic methodologies for melioidosis detection and provide insights on prospective diagnostic methods for the bacterium.
Collapse
Affiliation(s)
- Siti Nur Hazwani Oslan
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| | - Abdul Hafidz Yusoff
- Gold Rare Earth and Material Technopreneurship Centre (GREAT), Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Jeli Campus, Jeli, 17600, Kelantan, Malaysia.
| | - Mazlina Mazlan
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Si Jie Lim
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Jing Jing Khoo
- Tropical Infectious Diseases Research and Education Centre (TIDREC), High Impact Research Building, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Siti Nurbaya Oslan
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Aziah Ismail
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
2
|
Saxena A, Pal V, Tripathi NK, Goel AK. A recombinase polymerase amplification lateral flow assay for rapid detection of Burkholderia pseudomallei, the causative agent of melioidosis. Braz J Microbiol 2022; 53:185-193. [PMID: 35006582 PMCID: PMC8882546 DOI: 10.1007/s42770-021-00669-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 12/24/2021] [Indexed: 01/12/2023] Open
Abstract
Burkholderia pseudomallei causes a fatal and infectious disease, melioidosis or Whitmore's disease in humans and animals. Melioidosis is present in different parts of the world and is endemic in Southeast Asia and Northern Australia. Accurate diagnosis of melioidosis is difficult due to its common flu-like symptoms, potentially long incubation period and erroneous identification as culture contaminant. Early diagnosis of the disease is essentially required for administration of suitable antibiotics and disease containment. The present study reports a rapid, specific and sensitive recombinase polymerase amplification lateral flow assay for detection of B. pseudomallei. Specific primers and probe were designed and the assay was performed at 41 °C for 20 min in a portable incubator. End products were detected using ready-to-use lateral flow strips. RPA lateral flow assay could detect ≥ 250 fg genomic DNA of B. pseudomallei and ≥ 50 copies of recombinant plasmid harbouring the target DNA sequence. The assay was found to be highly specific and did not cross-react with other bacterial strains. In artificially spiked human blood and urine samples, the detection limit of the assay was 4.8 × 104 and 4.95 × 104 CFU/mL of B. pseudomallei, respectively. The detection limit of assay after 6 h of enrichment of artificially spiked urine samples was found to be 4.95 × 103 CFU/mL of B. pseudomallei. Detection limit in artificially spiked tap water and soil samples was determined to be 7.5 × 102 CFU/mL and 3.3 × 104 CFU per 5 g of B. pseudomallei, respectively.
Collapse
Affiliation(s)
- Apoorva Saxena
- grid.418940.00000 0004 1803 2027Bioprocess Technology Division, Defence Research and Development Establishment, Jhansi Road, Gwalior, 474002 India
| | - Vijai Pal
- grid.418940.00000 0004 1803 2027Bioprocess Technology Division, Defence Research and Development Establishment, Jhansi Road, Gwalior, 474002 India
| | - Nagesh Kumar Tripathi
- grid.418940.00000 0004 1803 2027Bioprocess Technology Division, Defence Research and Development Establishment, Jhansi Road, Gwalior, 474002 India
| | - Ajay Kumar Goel
- grid.418940.00000 0004 1803 2027Bioprocess Technology Division, Defence Research and Development Establishment, Jhansi Road, Gwalior, 474002 India
| |
Collapse
|
3
|
Murphy T, Phan K, Irvine KN, Lean D. The Role of Micronutrients and Toxic Metals in the Management of Epidemics in Cambodia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:11446. [PMID: 34769963 PMCID: PMC8582812 DOI: 10.3390/ijerph182111446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/11/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022]
Abstract
The illegal trade of wildlife in SE Asia has been identified as the likely cause of the COVID-19 pandemic. We reviewed 198 papers on the current COVID pandemic in Cambodia, diseases such as avian influenza and Nipah virus, most likely to develop into a new pandemic in Cambodia, and common features of disease that require mitigation. Artisanal goldmining uses pure mercury in the areas where wildlife is smuggled to China. Moreover, 30-40% of Cambodians are zinc deficient. High levels of arsenic in irrigation water (>1000 µg/L) are associated with very low levels of zinc in rice (5 µg/g) and rice is the primary staple food for the region. Brown rice from nine of 15 paddy fields in the arsenic zone of Cambodia had double the new guidelines of 100 µg/kg inorganic arsenic for children's food in the EU and USA. The combination of deficiencies of essential micronutrients like zinc and pervasive presence of arsenic and mercury has the potential to compromise the immunity of many Cambodians. Innovative solutions are suggested to improve micronutrient nutrition. Toxins that suppress the immune system must be better managed to reduce the virulence of pathogens. Cambodia was not likely the source of the COVID-19 but does have problems that could result in a new pandemic.
Collapse
Affiliation(s)
- Thomas Murphy
- Faculty of Science and Technology, International University, Phnom Penh 12000, Cambodia;
| | - Kongkea Phan
- Faculty of Science and Technology, International University, Phnom Penh 12000, Cambodia;
| | - Kim Neil Irvine
- Faculty of Architecture & Planning, Rangsit Campus, Thammasat University, Khlong Nueng 12121, Thailand;
| | - David Lean
- Lean Environmental, Apsley, ON K0L1A0, Canada;
| |
Collapse
|