1
|
Kok VC, Lee CK, Wang MC, Lu YT. Alterations in HMGB1, ROS1, FGFR1, FGFR2, IL6, and TLR4 are associated with worse survival in patients with esophageal squamous cell carcinoma. Contemp Oncol (Pozn) 2025; 29:99-106. [PMID: 40330450 PMCID: PMC12051876 DOI: 10.5114/wo.2025.149138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/06/2025] [Indexed: 05/08/2025] Open
Abstract
Introduction This study investigated the impact of alterations in six key genes (HMGB1, ROS1, IL6, FGFR1, FGFR2, and TLR4) on survival outcomes in patients with esophageal squamous cell carcinoma (ESCC). These genes are implicated in signaling pathways such as RTK-Ras, PI3K-Akt, TLR, and SHP2. Materials and methods Genomic data from five datasets were merged to identify 437 ESCC patients, categorized into altered (n = 66, 15%) and unaltered (n = 371, 85%) groups. Gene expression was analyzed using the GSE53624 dataset, and survival outcomes were assessed with Kaplan-Meier curves and log-rank tests. Hazard ratios (HR) were derived to quantify risk. Results The altered group exhibited a significantly higher tumor mutational burden (TMB) and mutation count than the unaltered group (p < 1E-7). While disease-free survival analysis of 76 patients showed no significant difference, overall survival (OS) analysis of 288 patients demonstrated significantly worse survival in the altered group [median OS (95% CI): 18.63 months (18.17-28.13) vs. 40.93 months (28.42 - not reached); HR = 2.16 (1.33-3.52)]. Additionally, higher HMGB1 expression was significantly associated with poorer survival (p < 0.008). Expression-treatment response correlation using the GSE45670 dataset showed that HMGB1 expression in the pathological complete remission group was significantly higher than in the normal epithelium group, p = 0.016. Conclusions This study highlights that genomic alterations in these six genes are associated with poorer OS in ESCC, despite higher TMB potentially increasing tumor neo-antigens. These findings underscore the need for further research to explore their prognostic and therapeutic potential.
Collapse
Affiliation(s)
- Victor C. Kok
- Division of Medical Oncology, The Cancer Center of Kuang Tien General Hospital, Taichung, Taiwan
| | - Chien-Kuan Lee
- Department of Pathology, Kuang Tien General Hospital, Taichung, Taiwan
| | - Ming-Chih Wang
- Department of Radiation Oncology, Kuang Tien General Hospital, Taichung, Taiwan
| | - Yen-Te Lu
- Department of Radiation Oncology, Kuang Tien General Hospital, Taichung, Taiwan
| |
Collapse
|
2
|
Ding L, Chen B, Zhou Z, Mei Z, Cao K, Lu X, Chen W. Exploring the genetic correlation and causal relationships between breast cancer and meningioma using bidirectional Mendelian randomization. Sci Rep 2025; 15:4271. [PMID: 39905226 PMCID: PMC11794611 DOI: 10.1038/s41598-025-88829-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 01/31/2025] [Indexed: 02/06/2025] Open
Abstract
Previous studies have indicated a significantly higher prevalence of breast cancer (BC) among female patients with meningioma compared to the general female population. Therefore, this study aimed to assess the causal relationship between BC and meningioma at the genetic level. Genetic instrumental variables (IVs) for BC were identified from the Breast Cancer Association Consortium (BCAC), the Discovery Biology and Risk of Inherited Variants in Breast Cancer Consortium (DRIVE), the Collaborative Oncological Gene-environment Study (iCOGS), and 11 other BC genome-wide association studies (GWAS). Meningioma GWAS data were obtained from the FinnGen consortium and were further divided into intracranial and spinal meningioma groups for analysis. The primary analysis employed the inverse-variance weighted (IVW) method, supported by sensitivity analysis to address pleiotropy and enhance robustness. Next, linkage disequilibrium score regression (LDSC) was used to assess the genetic correlation between BC and meningioma. Finally, we applied the Functional Mapping and Annotation (FUMA) platform to conduct an in-depth analysis of the GWAS data. After rigorous screening and Mendelian randomization (MR) tests, genetically predicted overall BC (OR: 1.17, P = 0.0045) and ER(estrogen receptors) + BC (OR: 1.21, P = 0.0006) showed a potential causal association with intracranial meningioma. No causal relationships were found between intracranial meningioma and three BC subtypes. No bidirectional causal relationships were found between spinal meningioma and any BC subtype. The LDSC results suggested a modest positive genetic correlation between overall BC (rg: 0.152, SE: 0.077, P = 0.048), ER + BC (rg: 0.181, SE: 0.086, P = 0.035), and intracranial meningioma. FUMA analysis identified PITPNB, TTC28, and CHEK2 as shared risk genes between overall BC, ER + BC, and intracranial meningioma. These findings suggest that BC, especially ER + BC, may be a risk factor for intracranial meningioma. ER-related signaling pathways and the regulation of DNA damage may play a critical role in the pathogenesis of both diseases.
Collapse
Affiliation(s)
- Lu Ding
- Department of General Practices, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212000, People's Republic of China
| | - Bo Chen
- Department of Neurosurgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212000, People's Republic of China
| | - Zhou Zhou
- Department of Neurosurgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212000, People's Republic of China
| | - Zhaojun Mei
- Department of Neurosurgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212000, People's Republic of China
| | - Kan Cao
- Department of Neurosurgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212000, People's Republic of China
| | - Xinyu Lu
- Department of Neurosurgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212000, People's Republic of China.
| | - Wei Chen
- Department of Neurosurgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212000, People's Republic of China.
| |
Collapse
|
3
|
Zhou Y, Mo S, Cui H, Sun R, Zhang W, Zhuang X, Xu E, Li H, Cheng Y, Meng Y, Liu M, Yan T, Liu H, Zhang L, Yang B, Xi Y, Wang S, Cheng X, Li S, Liu Z, Zhan Q, Hu Z, Cui Y. Immune-tumor interaction dictates spatially directed evolution of esophageal squamous cell carcinoma. Natl Sci Rev 2024; 11:nwae150. [PMID: 38803565 PMCID: PMC11129594 DOI: 10.1093/nsr/nwae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/14/2024] [Accepted: 04/08/2024] [Indexed: 05/29/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a poor-prognostic cancer type with extensive intra- and inter-patient heterogeneity in both genomic variations and tumor microenvironment (TME). However, the patterns and drivers of spatial genomic and microenvironmental heterogeneity of ESCC remain largely unknown. Here, we generated a spatial multi-omic atlas by whole-exome, transcriptome, and methylome sequencing of 507 tumor samples from 103 patients. We identified a novel tumor suppressor PREX2, accounting for 22% of ESCCs with frequent somatic mutations or hyper-methylation, which promoted migration and invasion of ESCC cells in vitro. Analysis of the TME and quantification of subclonal expansion indicated that ESCCs undergo spatially directed evolution, where subclones mostly originated from the tumor center but had a biased clonal expansion to the upper direction of the esophagus. Interestingly, we found upper regions of ESCCs often underwent stronger immunoediting with increased selective fitness, suggesting more stringent immune selection. In addition, distinct TMEs were associated with variable genomic and clinical outcomes. Among them, hot TME was associated with high immune evasion and subclonal heterogeneity. We also found that immunoediting, instead of CD8+ T cell abundance, acts as an independent prognostic factor of ESCCs. Importantly, we found significant heterogeneity in previously considered potential therapeutic targets, as well as BRCAness characteristics in a subset of patients, emphasizing the importance of focusing on heterogeneity in ESCC targeted therapy. Collectively, these findings provide novel insights into the mechanisms of the spatial evolution of ESCC and inform precision therapeutic strategies.
Collapse
Affiliation(s)
- Yong Zhou
- Cancer Institute, Department of Pathology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518000, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan 030001, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518000, China
| | - Shanlan Mo
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
| | - Heyang Cui
- Cancer Institute, Department of Pathology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518000, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan 030001, China
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Ruifang Sun
- Department of Tumor Biobank, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, China
| | - Weimin Zhang
- Cancer Institute, Department of Pathology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518000, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaofei Zhuang
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, China
| | - Enwei Xu
- Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, China
| | - Hongyi Li
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan 030001, China
| | - Yikun Cheng
- Cancer Institute, Department of Pathology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518000, China
- College of Letters & Science, University of California Berkeley, Berkeley, CA 94704, USA
| | - Yongsheng Meng
- Department of Tumor Biobank, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, China
| | - Meilin Liu
- Department of Tumor Biobank, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, China
| | - Ting Yan
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan 030001, China
| | - Huijuan Liu
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan 030001, China
| | - Ling Zhang
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan 030001, China
| | - Bin Yang
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, China
| | - Yanfeng Xi
- Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, China
| | - Shubin Wang
- Cancer Institute, Department of Pathology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Xiaolong Cheng
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan 030001, China
| | - ShuaiCheng Li
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518000, China
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qimin Zhan
- Cancer Institute, Department of Pathology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518000, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Zheng Hu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
| | - Yongping Cui
- Cancer Institute, Department of Pathology, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518000, China
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
4
|
Okawa Y, Sasagawa S, Kato H, Johnson TA, Nagaoka K, Kobayashi Y, Hayashi A, Shibayama T, Maejima K, Tanaka H, Miyano S, Shibahara J, Nishizuka S, Hirano S, Seto Y, Iwaya T, Kakimi K, Yasuda T, Nakagawa H. Immuno-genomic analysis reveals eosinophilic feature and favorable prognosis of female non-smoking esophageal squamous cell carcinomas. Cancer Lett 2024; 581:216499. [PMID: 38013050 DOI: 10.1016/j.canlet.2023.216499] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
Most of esophageal squamous cell carcinoma (ESCC) develop in smoking males in Japan, but the genomic etiology and immunological characteristics of rare non-smoking female ECSS remain unclear. To elucidate the genomic and immunological features of ESCC in non-smoking females, we analyzed whole-genome or transcriptome sequencing data from 94 ESCCs, including 20 rare non-smoking female cases. In addition, 31,611 immune cells were extracted from four ESCC tissues and subject to single-cell RNA-seq. We compared their immuno-genomic and microbiome profiles between non-smoking female and smoking ESCCs. Non-smoking females showed much better prognosis. Whole-genome sequencing analysis showed no significant differences in driver genes or copy number alterations depending on smoking status. The mutational signatures specifically observed in non-smoking females ESCC could be attributed to aging. Immune profiling from RNA-seq revealed that ESCC in non-smoking females had high tumor microenvironment signatures and a high abundance of eosinophils with a favorable prognosis. Single-cell RNA-sequencing of intratumor immune cells revealed gender differences of eosinophils and their activation in female cases. ESCCs in non-smoking females have age-related mutational signatures and gender-specific tumor immune environment with eosinophils, which is likely to contribute to their favorable prognosis.
Collapse
Affiliation(s)
- Yuki Okawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Shota Sasagawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hiroaki Kato
- Department of Surgery, Graduate School of Medicine, Kindai University, Osaka, Japan
| | - Todd A Johnson
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Koji Nagaoka
- Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo, Japan
| | - Yukari Kobayashi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo, Japan
| | - Akimasa Hayashi
- Department of Pathology, Kyorin University Faculty of Medicine, Mitaka, Japan
| | - Takahiro Shibayama
- Department of Pathology, Kyorin University Faculty of Medicine, Mitaka, Japan
| | - Kazuhiro Maejima
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hiroko Tanaka
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoru Miyano
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Junji Shibahara
- Department of Pathology, Kyorin University Faculty of Medicine, Mitaka, Japan
| | - Satoshi Nishizuka
- Division of Biomedical Research and Development, Iwate Medical University Institute for Biomedical Sciences, Yahaba, Japan
| | - Satoshi Hirano
- Department of Gastroenterological Surgery II, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Yasuyuki Seto
- Department of GI Surgery, Graduate of School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeshi Iwaya
- Department of Clinical Oncology, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Kazuhiro Kakimi
- Department of Immunotherapeutics, The University of Tokyo Hospital, Tokyo, Japan; Department of Immunology, Graduate School of Medicine, Kindai University, Osaka, Japan
| | - Takushi Yasuda
- Department of Surgery, Graduate School of Medicine, Kindai University, Osaka, Japan
| | - Hidewaki Nakagawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
| |
Collapse
|
5
|
Gupta R, Strbenac D, Satgunaseelan L, Cheung VKY, Narayanappa H, Ashford B, Mitchell J, Thind A, Palme CE, Ch'ng S, Low THH, Wykes J, Willet CE, Chew T, Yang J, Ranson M, Clark JR. Comparing Genomic Landscapes of Oral and Cutaneous Squamous Cell Carcinoma of the Head and Neck: Quest for Novel Diagnostic Markers. Mod Pathol 2023; 36:100190. [PMID: 37080394 DOI: 10.1016/j.modpat.2023.100190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 04/22/2023]
Abstract
Squamous cell carcinoma is the most common head and neck malignancy arising from the oral mucosa and the skin. The histologic and immunohistochemical features of oral squamous cell carcinoma (OSCC) and head and neck cutaneous squamous cell carcinoma (HNcSCC) are similar, making it difficult to identify the primary site in cases of metastases. With the advent of immunotherapy, reliable distinction of OSCC and HNcSCC at metastatic sites has important treatment and prognostic implications. Here, we investigate and compare the genomic landscape of OSCC and HNcSCC to identify diagnostically useful biomarkers. Whole-genome sequencing data from 57 OSCC and 41 HNcSCC patients were obtained for tumor and matched normal samples. Tumor mutation burden (TMB), Catalogue of Somatic Mutations in Cancer (COSMIC) mutational signatures, frequent chromosomal alterations, somatic single nucleotide, and copy number variations were analyzed. The median TMB of 3.75 in primary OSCC was significantly lower (P < .001) than that of 147.51 mutations/Mb in primary HNcSCC. The COSMIC mutation signatures were significantly different (P < .001) between OSCC and HNcSCC. OSCC showed COSMIC single-base substitution (SBS) mutation signature 1 and AID/APOBEC activity-associated signature 2 and/or 13. All except 1 HNcSCC from hair-bearing scalp showed UV damage-associated COSMIC SBS mutation signature 7. Both OSCC and HNcSCC demonstrated a predominance of tumor suppressor gene mutations, predominantly TP53. The most frequently mutated oncogenes were PIK3CA and MUC4 in OSCC and HNcSCC, respectively. The metastases of OSCC and HNcSCC demonstrated TMB and COSMIC SBS mutation signatures similar to their primary counterparts. The combination of high TMB and UV signature in a metastatic keratinizing squamous cell carcinoma suggests HNcSCC as the primary site and may also facilitate decisions regarding immunotherapy. HNcSCC and OSCC show distinct genomic profiles despite histologic and immunohistochemical similarities. Their genomic characteristics may underlie differences in behavior and guide treatment decisions in recurrent and metastatic settings.
Collapse
Affiliation(s)
- Ruta Gupta
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia; Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, New South Wales, Australia.
| | - Dario Strbenac
- School of Mathematics and Statistics, The University of Sydney, Sydney, New South Wales, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Laveniya Satgunaseelan
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia; Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Veronica Ka-Yan Cheung
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia; Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Harini Narayanappa
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Bruce Ashford
- Graduate School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia; Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia; Illawarra Shoalhaven Local Health District, Wollongong, New South Wales, Australia
| | - Jenny Mitchell
- Graduate School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia; Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia; Illawarra Shoalhaven Local Health District, Wollongong, New South Wales, Australia
| | - Amarinder Thind
- Graduate School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia; Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| | - Carsten E Palme
- Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, New South Wales, Australia; Department of Head and Neck Surgery, Sydney Head and Neck Cancer Institute, Chris O'Brien Lifehouse, Sydney, New South Wales, Australia
| | - Sydney Ch'ng
- Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, New South Wales, Australia; Department of Head and Neck Surgery, Sydney Head and Neck Cancer Institute, Chris O'Brien Lifehouse, Sydney, New South Wales, Australia; Department of Plastic and Reconstructive Surgery, Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, New South Wales, Australia; Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Sydney, New South Wales, Australia
| | - Tsu-Hui Hubert Low
- Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, New South Wales, Australia; Department of Head and Neck Surgery, Sydney Head and Neck Cancer Institute, Chris O'Brien Lifehouse, Sydney, New South Wales, Australia; Department of Otolaryngology-Head & Neck Surgery, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - James Wykes
- Department of Head and Neck Surgery, Sydney Head and Neck Cancer Institute, Chris O'Brien Lifehouse, Sydney, New South Wales, Australia
| | - Cali E Willet
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia; Sydney Informatics Hub, Core Research Facilities, The University of Sydney, Sydney, New South Wales, Australia
| | - Tracy Chew
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia; Sydney Informatics Hub, Core Research Facilities, The University of Sydney, Sydney, New South Wales, Australia
| | - Jean Yang
- School of Mathematics and Statistics, The University of Sydney, Sydney, New South Wales, Australia; Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Marie Ranson
- Graduate School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia; Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia; School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia
| | - Jonathan R Clark
- Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, New South Wales, Australia; Department of Head and Neck Surgery, Sydney Head and Neck Cancer Institute, Chris O'Brien Lifehouse, Sydney, New South Wales, Australia; Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Martinez-Fundichely A, Dixon A, Khurana E. Modeling tissue-specific breakpoint proximity of structural variations from whole-genomes to identify cancer drivers. Nat Commun 2022; 13:5640. [PMID: 36163358 PMCID: PMC9512825 DOI: 10.1038/s41467-022-32945-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 08/24/2022] [Indexed: 11/11/2022] Open
Abstract
Structural variations (SVs) in cancer cells often impact large genomic regions with functional consequences. However, identification of SVs under positive selection is a challenging task because little is known about the genomic features related to the background breakpoint distribution in different cancers. We report a method that uses a generalized additive model to investigate the breakpoint proximity curves from 2,382 whole-genomes of 32 cancer types. We find that a multivariate model, which includes linear and nonlinear partial contributions of various tissue-specific features and their interaction terms, can explain up to 57% of the observed deviance of breakpoint proximity. In particular, three-dimensional genomic features such as topologically associating domains (TADs), TAD-boundaries and their interaction with other features show significant contributions. The model is validated by identification of known cancer genes and revealed putative drivers in cancers different than those with previous evidence of positive selection.
Collapse
Affiliation(s)
- Alexander Martinez-Fundichely
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA.
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA.
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA.
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.
| | - Austin Dixon
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
- Children's National Hospital, Washington, DC, 20010, USA
| | - Ekta Khurana
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, 10021, USA.
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA.
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA.
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
7
|
Sasagawa S, Kato H, Nagaoka K, Sun C, Imano M, Sato T, Johnson TA, Fujita M, Maejima K, Okawa Y, Kakimi K, Yasuda T, Nakagawa H. Immuno-genomic profiling of biopsy specimens predicts neoadjuvant chemotherapy response in esophageal squamous cell carcinoma. Cell Rep Med 2022; 3:100705. [PMID: 35944530 PMCID: PMC9418738 DOI: 10.1016/j.xcrm.2022.100705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/15/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive cancers and is primarily treated with platinum-based neoadjuvant chemotherapy (NAC). Some ESCCs respond well to NAC. However, biomarkers to predict NAC sensitivity and their response mechanism in ESCC remain unclear. We perform whole-genome sequencing and RNA sequencing analysis of 141 ESCC biopsy specimens before NAC treatment to generate a machine-learning-based diagnostic model to predict NAC reactivity in ESCC and analyzed the association between immunogenomic features and NAC response. Neutrophil infiltration may play an important role in ESCC response to NAC. We also demonstrate that specific copy-number alterations and copy-number signatures in the ESCC genome are significantly associated with NAC response. The interactions between the tumor genome and immune features of ESCC are likely to be a good indicator of therapeutic capability and a therapeutic target for ESCC, and machine learning prediction for NAC response is useful.
Collapse
Affiliation(s)
- Shota Sasagawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Hiroaki Kato
- Department of Surgery, Graduate School of Medicine, Kindai University, Osaka 577-8502, Japan
| | - Koji Nagaoka
- Department of Immuno-therapeutics, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Changbo Sun
- Department of Immuno-therapeutics, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Motohiro Imano
- Department of Surgery, Graduate School of Medicine, Kindai University, Osaka 577-8502, Japan
| | - Takao Sato
- Department of Pathology, Kindai University Faculty of Medicine, Osaka 577-8502, Japan
| | - Todd A Johnson
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Masashi Fujita
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Kazuhiro Maejima
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Yuki Okawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Kazuhiro Kakimi
- Department of Immuno-therapeutics, The University of Tokyo Hospital, Tokyo 113-8655, Japan
| | - Takushi Yasuda
- Department of Surgery, Graduate School of Medicine, Kindai University, Osaka 577-8502, Japan
| | - Hidewaki Nakagawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan.
| |
Collapse
|
8
|
Wang X, Chen X, Liu Y, Huang S, Ding J, Wang B, Dong P, Sun Z, Chen L. CSMD1 suppresses cancer progression by inhibiting proliferation, epithelial-mesenchymal transition, chemotherapy-resistance and inducing immunosuppression in esophageal squamous cell carcinoma. Exp Cell Res 2022; 417:113220. [PMID: 35623420 DOI: 10.1016/j.yexcr.2022.113220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/15/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022]
Abstract
Human CUB and Sushi multiple domains (CSMD1) is considered a crucial role in cancer progression, but the specific function in esophageal squamous cell carcinoma (ESCC) is not clear. Understanding the role of CSMD1 in ESCC progression may lead to a novel strategy for ESCC treatment. Here, we found that both CSMD1 mRNA and protein levels were downregulated in ESCC tissues. Reduced CSMD1 expression was correlated with a poor prognosis in ESCC patients. CSMD1 expression inhibited proliferation, migration and invasion in ESCC cell lines in vitro. CSMD1 deficiency in established xenografted tumors increases tumor size and weight. We further found that CSMD1-overexpression cells are more sensitive to chemotherapy. Moreover, we addressed the role of CSMD1 in the CD8+ T cell immune response. An in vitro killing assay showed that the cytotoxicity of CD8+ T cells was inhibited in CSMD1-overexpression tumor cells. In vivo, in CSMD1 deficiency tumor-bearing mice activation and expansion of CD8+ T cells were increased. Further investigation showed that CSMD1 expression on tumor cells was positively correlated with CD8+ T cells infiltration and cytokines secretion. These findings highlight that CSMD1 is a tumor suppressor gene in ESCC patients and a positive regulator of CD8+ T cells expansion and activation, and could increase cytokines secretion, indicating that tumor cell-associated CSMD1 might be a target for ESCC.
Collapse
Affiliation(s)
- Xing Wang
- Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China
| | - Xinwei Chen
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yuanyuan Liu
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Shan Huang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Tongji Hospital, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Jian Ding
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Baoxin Wang
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Pin Dong
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zhenfeng Sun
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Lixiao Chen
- Department of Otolaryngology: Head and Neck Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
9
|
Zou B, Guo D, Kong P, Wang Y, Cheng X, Cui Y. Integrative Genomic Analyses of 1,145 Patient Samples Reveal New Biomarkers in Esophageal Squamous Cell Carcinoma. Front Mol Biosci 2022; 8:792779. [PMID: 35127817 PMCID: PMC8814608 DOI: 10.3389/fmolb.2021.792779] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/02/2021] [Indexed: 12/23/2022] Open
Abstract
Due to the lack of effective diagnostic markers and therapeutic targets, esophageal squamous cell carcinoma (ESCC) shows a poor 5 years survival rate of less than 30%. To explore the potential therapeutic targets of ESCC, we integrated and reanalyzed the mutation data of WGS (whole genome sequencing) or WES (whole exome sequencing) from a total of 1,145 samples in 7 large ESCC cohorts, including 270 ESCC gene expression data. Two new mutation signatures and 20 driver genes were identified in our study. Among them, AP3S1, MUC16, and RPS15 were reported for the first time. We also discovered that the KMT2D was associated with the multiple clinical characteristics of ESCC, and KMT2D knockdown cells showed enhanced cell migration and cell invasion. Furthermore, a few neoantigens were shared between ESCC patients. For ESCC, compared to TMB, neoantigen might be treated as a better immunotherapy biomarker. Our research expands the understanding of ESCC mutations and helps the identification of ESCC biomarkers, especially for immunotherapy biomarkers.
Collapse
Affiliation(s)
- Binbin Zou
- Key Laboratory of Cellular Physiology of the Ministry of Education, Shanxi Medical University, Taiyuan, China
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| | - Dinghe Guo
- Key Laboratory of Cellular Physiology of the Ministry of Education, Shanxi Medical University, Taiyuan, China
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| | - Pengzhou Kong
- Key Laboratory of Cellular Physiology of the Ministry of Education, Shanxi Medical University, Taiyuan, China
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| | - Yanqiang Wang
- Key Laboratory of Cellular Physiology of the Ministry of Education, Shanxi Medical University, Taiyuan, China
- Department of Pathology, Shanxi Medical University, Taiyuan, China
| | - Xiaolong Cheng
- Key Laboratory of Cellular Physiology of the Ministry of Education, Shanxi Medical University, Taiyuan, China
- Department of Pathology, Shanxi Medical University, Taiyuan, China
- *Correspondence: Xiaolong Cheng, ; Yongping Cui,
| | - Yongping Cui
- Key Laboratory of Cellular Physiology of the Ministry of Education, Shanxi Medical University, Taiyuan, China
- Department of Pathology, Shanxi Medical University, Taiyuan, China
- Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Peking University Shenzhen Hospital, Shenzhen, China
- *Correspondence: Xiaolong Cheng, ; Yongping Cui,
| |
Collapse
|
10
|
Chromothripsis is a frequent event and underlies typical genetic changes in early T-cell precursor lymphoblastic leukemia in adults. Leukemia 2022; 36:2577-2585. [PMID: 35974102 PMCID: PMC9613476 DOI: 10.1038/s41375-022-01671-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/08/2022]
Abstract
Chromothripsis is a mitotic catastrophe that arises from multiple double strand breaks and incorrect re-joining of one or a few chromosomes. We report on incidence, distribution, and features of chromothriptic events in T-cell acute lymphoblastic leukemias (T-ALL). SNP array was performed in 103 T-ALL (39 ETP/near ETP, 59 non-ETP, and 5 with unknown stage of differentiation), including 38 children and 65 adults. Chromothripsis was detected in 11.6% of all T-ALL and occurred only in adult cases with an immature phenotype (12/39 cases; 30%). It affected 1 to 4 chromosomes, and recurrently involved chromosomes 1, 6, 7, and 17. Abnormalities of genes typically associated with T-ALL were found at breakpoints of chromothripsis. In addition, it gave rise to new/rare alterations, such as, the SFPQ::ZFP36L2 fusion, reported in pediatric T-ALL, deletions of putative suppressors, such as IKZF2 and CSMD1, and amplification of the BCL2 gene. Compared to negative cases, chromothripsis positive T-ALL had a significantly higher level of MYCN expression, and a significant downregulation of RGCC, which is typically induced by TP53 in response to DNA damage. Furthermore we identified mutations and/or deletions of DNA repair/genome stability genes in all cases, and an association with NUP214 rearrangements in 33% of cases.
Collapse
|
11
|
Niu Y, Wang G, Li Y, Guo W, Guo Y, Dong Z. LncRNA FOXP4-AS1 Promotes the Progression of Esophageal Squamous Cell Carcinoma by Interacting With MLL2/H3K4me3 to Upregulate FOXP4. Front Oncol 2022; 11:773864. [PMID: 34970490 PMCID: PMC8712759 DOI: 10.3389/fonc.2021.773864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/19/2021] [Indexed: 01/16/2023] Open
Abstract
Malignant tumors are a grave threat to human health. Esophageal squamous cell carcinoma (ESCC) is a common gastrointestinal malignant tumor. China has a high incidence of ESCC, and its morbidity and mortality are higher than the global average. Increasingly, studies have shown that long noncoding RNAs (lncRNAs) play a vital function in the occurrence and development of tumors. Although the biological function of FOXP4-AS1 has been demonstrated in various tumors, the potential molecular mechanism of FOXP4-AS1 in ESCC is still poorly understood. The expression of FOXP4 and FOXP4-AS1 was detected in ESCC by quantitative real-time PCR (qRT–PCR) or SP immunohistochemistry (IHC). shRNA was used to silence gene expression. Apoptosis, cell cycle, MTS, colony formation, invasion and migration assays were employed to explore the biological functions of FOXP4 and FOXP4-AS1. The potential molecular mechanism of FOXP4-AS1 in ESCC was determined by dual-luciferase reporter, RNA immunoprecipitation (RIP) and chromatin immunoprecipitation (ChIP). Here, we demonstrated that FOXP4-AS1 was significantly increased in ESCC tissues and cell lines, associated with lymph node metastasis and TNM staging. Cell function experiments showed that FOXP4-AS1 promoted the proliferation, invasion and migration ability of ESCC cells. The expression of FOXP4-AS1 and FOXP4 in ESCC tissues was positively correlated. Further research found that FOXP4-AS1, upregulated in ESCC, promotes FOXP4 expression by enriching MLL2 and H3K4me3 in the FOXP4 promoter through a “molecular scaffold”. Moreover, FOXP4, a transcription factor of β-catenin, promotes the transcription of β-catenin and ultimately leads to the malignant progression of ESCC. Finally, FOXP4-AS1 may be a new therapeutic target for ESCC.
Collapse
Affiliation(s)
- Yunfeng Niu
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Gaoyan Wang
- Experimental Center, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yan Li
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wei Guo
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanli Guo
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhiming Dong
- Laboratory of Pathology, Hebei Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
12
|
Honoré N, Galot R, van Marcke C, Limaye N, Machiels JP. Liquid Biopsy to Detect Minimal Residual Disease: Methodology and Impact. Cancers (Basel) 2021; 13:5364. [PMID: 34771526 PMCID: PMC8582541 DOI: 10.3390/cancers13215364] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022] Open
Abstract
One reason why some patients experience recurrent disease after a curative-intent treatment might be the persistence of residual tumor cells, called minimal residual disease (MRD). MRD cannot be identified by standard radiological exams or clinical evaluation. Tumor-specific alterations found in the blood indirectly diagnose the presence of MRD. Liquid biopsies thus have the potential to detect MRD, allowing, among other things, the detection of circulating tumor DNA (ctDNA), circulating tumor cells (CTC), or tumor-specific microRNA. Although liquid biopsy is increasingly studied, several technical issues still limit its clinical applicability: low sensitivity, poor standardization or reproducibility, and lack of randomized trials demonstrating its clinical benefit. Being able to detect MRD could give clinicians a more comprehensive view of the risk of relapse of their patients and could select patients requiring treatment escalation with the goal of improving cancer survival. In this review, we are discussing the different methodologies used and investigated to detect MRD in solid cancers, their respective potentials and issues, and the clinical impacts that MRD detection will have on the management of cancer patients.
Collapse
Affiliation(s)
- Natasha Honoré
- Institute for Experimental and Clinical Research (IREC, Pôle MIRO), Université Catholique de Louvain (UCLouvain) ,1200 Brussels, Belgium; (R.G.); (C.v.M.)
| | - Rachel Galot
- Institute for Experimental and Clinical Research (IREC, Pôle MIRO), Université Catholique de Louvain (UCLouvain) ,1200 Brussels, Belgium; (R.G.); (C.v.M.)
- Department of Medical Oncology, Institut Roi Albert II, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Cédric van Marcke
- Institute for Experimental and Clinical Research (IREC, Pôle MIRO), Université Catholique de Louvain (UCLouvain) ,1200 Brussels, Belgium; (R.G.); (C.v.M.)
- Department of Medical Oncology, Institut Roi Albert II, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Nisha Limaye
- Genetics of Autoimmune Diseases and Cancer, de Duve Institute, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
| | - Jean-Pascal Machiels
- Institute for Experimental and Clinical Research (IREC, Pôle MIRO), Université Catholique de Louvain (UCLouvain) ,1200 Brussels, Belgium; (R.G.); (C.v.M.)
- Department of Medical Oncology, Institut Roi Albert II, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| |
Collapse
|
13
|
Takemoto A, Tanimoto K, Mori S, Inoue J, Fujiwara N, Noda T, Inazawa J. Integrative genome-wide analyses reveal the transcriptional aberrations in Japanese esophageal squamous cell carcinoma. Cancer Sci 2021; 112:4377-4392. [PMID: 34263978 PMCID: PMC8486213 DOI: 10.1111/cas.15063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 01/14/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a malignant disease. At present, the genomic profiles of ESCC are known to a considerable extent, and DNA methylation and gene expression profiles have been mainly used for the classification of ESCC subtypes, but integrative genomic, transcriptomic, and epigenomic analyses remain insufficient. Therefore, we performed integrative analyses using whole-exome sequencing, DNA methylation, and RNA sequencing (RNA-seq) analyses of Japanese patients with ESCC. In cancer-related genes, such as NOTCH family genes, RTK/PI3K pathway genes, and NFE2L2 pathway genes, variants and copy number amplification were detected frequently. Japanese ESCC cases were clustered into two mutational signatures: an APOBEC-associated signature and an age-related signature. In imprinted genes, DNA methylation was aberrant in gene promoter regions and correlated well with gene expression profiles. Nonsynonymous single-nucleotide variants and allelic expression imbalance were detected frequently in FAT family genes. Our integrative genome-wide analyses, including DNA methylation and allele-specific gene expression profiles, revealed altered gene regulation of imprinted genes and FAT family genes in ESCC.
Collapse
Affiliation(s)
- Akira Takemoto
- Bioresource Research Center, Tokyo Medical and Dental University (TMDU) Yushima, Tokyo, Japan
| | - Kousuke Tanimoto
- Genome Laboratory, Medical Research Institute, TMDU, Tokyo, Japan.,Genomics Research Support Unit, Research Core, TMDU, Tokyo, Japan
| | - Seiichi Mori
- Division of Cancer Genomics, Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - Jun Inoue
- Department of Molecular Cytogenetics, Medical Research Institute, TMDU, Tokyo, Japan
| | - Naoto Fujiwara
- Department of Gastrointestinal Surgery, TMDU, Tokyo, Japan
| | - Tetsuo Noda
- Cancer Institute, Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - Johji Inazawa
- Bioresource Research Center, Tokyo Medical and Dental University (TMDU) Yushima, Tokyo, Japan.,Department of Molecular Cytogenetics, Medical Research Institute, TMDU, Tokyo, Japan
| |
Collapse
|
14
|
Voutsadakis IA. Amplification of 8p11.23 in cancers and the role of amplicon genes. Life Sci 2020; 264:118729. [PMID: 33166592 DOI: 10.1016/j.lfs.2020.118729] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/31/2020] [Accepted: 11/04/2020] [Indexed: 02/08/2023]
Abstract
Copy number alterations are widespread in cancer genomes and are part of the genomic instability underlying the pathogenesis of neoplastic diseases. Recurrent copy number alterations of specific chromosomal loci may result in gains of oncogenes or losses of tumor suppressor genes and become entrenched in the genomic framework of certain types of cancers. The locus at chromosome 8p11.23 presents recurrent amplifications most commonly in squamous lung carcinomas, breast cancers, squamous esophageal carcinomas, and urothelial carcinomas. Amplification is rare in other cancers. The amplified segment involves several described oncogenes that may promote cancer cell survival and proliferation, as well as less well characterized genes that could also contribute to neoplastic processes. Genes proposed to be "drivers" in 8p11.23 amplifications include ZNF703, FGFR1 and PLPP5. Additional genes in the locus that could be functionally important in neoplastic networks include co-chaperone BAG4, lysine methyltransferase NSD3, ASH2L, a member of another methyltransferase complex, MLL and the mRNA processing and translation regulators LSM1 and EIF4EBP1. In this paper, genes located in the amplified segment of 8p11.23 will be examined for their role in cancer and data arguing for their importance for cancers with the amplification will be presented.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Algoma District Cancer Program, Sault Area Hospital, Sault Ste. Marie, Ontario, Canada; Section of Internal Medicine, Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, Ontario, Canada.
| |
Collapse
|