1
|
Mezőfi L, Markó V, Taranyi DÁ, Markó G. Sex-specific life-history strategies among immature jumping spiders: Differences in body parameters and behavior. Curr Zool 2023; 69:535-551. [PMID: 37637309 PMCID: PMC10449423 DOI: 10.1093/cz/zoac069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/02/2022] [Indexed: 08/29/2023] Open
Abstract
Selection forces often generate sex-specific differences in various traits closely related to fitness. While in adult spiders (Araneae), sexes often differ in coloration, body size, antipredator, or foraging behavior, such sex-related differences are less pronounced among immatures. However, sex-specific life-history strategies may also be adaptive for immatures. Thus, we hypothesized that among spiders, immature individuals show different life-history strategies that are expressed as sex-specific differences in body parameters and behavioral features, and also in their relationships. We used immature individuals of a protandrous jumping spider, Carrhotus xanthogramma, and examined sex-related differences. The results showed that males have higher mass and larger prosoma than females. Males were more active and more risk tolerant than females. Male activity increased with time, and larger males tended to capture the prey faster than small ones, while females showed no such patterns. However, females reacted to the threatening abiotic stimuli more with the increasing number of test sessions. In both males and females, individuals with better body conditions tended to be more risk averse. Spiders showed no sex-specific differences in interindividual behavioral consistency and in intraindividual behavioral variation in the measured behavioral traits. Finally, we also found evidence for behavioral syndromes (i.e., correlation between different behaviors), where in males, only the activity correlated with the risk-taking behavior, but in females, all the measured behavioral traits were involved. The present study demonstrates that C. xanthogramma sexes follow different life-history strategies even before attaining maturity.
Collapse
Affiliation(s)
- László Mezőfi
- Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, Budapest 1118, Hungary
| | - Viktor Markó
- Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, Budapest 1118, Hungary
| | - Dóra Ágnes Taranyi
- Institute of Viticulture and Enology, Hungarian University of Agriculture and Life Sciences, Budapest 1118, Hungary
| | - Gábor Markó
- Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, Budapest 1118, Hungary
| |
Collapse
|
2
|
Wildermuth B, Dönges C, Matevski D, Penanhoat A, Seifert CL, Seidel D, Scheu S, Schuldt A. Tree species identity, canopy structure and prey availability differentially affect canopy spider diversity and trophic composition. Oecologia 2023; 203:37-51. [PMID: 37709958 PMCID: PMC10615988 DOI: 10.1007/s00442-023-05447-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023]
Abstract
Forest canopies maintain a high proportion of arthropod diversity. The drivers that structure these communities, however, are poorly understood. Therefore, integrative research connecting tree species identity and environmental stand properties with taxonomic and functional community composition of canopy arthropods is required. In this study, we investigated how the taxonomic, functional and trophic composition of arboreal spider communities is affected by tree species composition and associated differences in canopy structure and prey availability in temperate forests. We sampled canopy spiders as well as their potential prey using insecticidal fogging in monospecific and mixed stands of native European beech, native Norway spruce and non-native Douglas fir. Trophic metrics were obtained from stable isotope analysis and structural canopy properties were assessed with mobile laser scanning. Monospecific native spruce stands promoted local canopy spider abundance and diversity, but native beech and beech-conifer mixtures had the highest diversity at landscape scale. Spider community composition differed between monospecific stands, with broadleaf-conifer mixtures mitigating these differences. Irrespective of tree species identity, spider abundance, taxonomic diversity, functional richness and isotopic richness increased in structurally heterogeneous canopies with high prey abundances, but functional evenness and trophic divergence decreased. Our study shows that canopy spiders are differentially affected by tree species identity, canopy structure and prey availability. Broadleaf-conifer mixtures mitigated negative effects of (non-native) conifers, but positive mixture effects were only evident at the landscape scale. Structurally heterogeneous canopies promoted the dominance of only specific trait clusters. This indicates that intermediate heterogeneity might result in high stability of ecological communities.
Collapse
Affiliation(s)
- Benjamin Wildermuth
- Department of Forest Nature Conservation, University of Göttingen, Büsgenweg 3, 37077, Göttingen, Germany.
| | - Clemens Dönges
- Department of Forest Nature Conservation, University of Göttingen, Büsgenweg 3, 37077, Göttingen, Germany
| | - Dragan Matevski
- Department of Forest Nature Conservation, University of Göttingen, Büsgenweg 3, 37077, Göttingen, Germany
- Animal Ecology, Leuphana University Lüneburg, Universitätsallee 1, 21335, Lüneburg, Germany
| | - Alice Penanhoat
- Department for Spatial Structures and Digitization of Forests, University of Göttingen, Büsgenweg 1, 37077, Göttingen, Germany
| | - Carlo L Seifert
- Department of Forest Nature Conservation, University of Göttingen, Büsgenweg 3, 37077, Göttingen, Germany
| | - Dominik Seidel
- Department for Spatial Structures and Digitization of Forests, University of Göttingen, Büsgenweg 1, 37077, Göttingen, Germany
| | - Stefan Scheu
- Animal Ecology Group, JF Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, 37073, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Büsgenweg 1, 37077, Göttingen, Germany
| | - Andreas Schuldt
- Department of Forest Nature Conservation, University of Göttingen, Büsgenweg 3, 37077, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Büsgenweg 1, 37077, Göttingen, Germany
| |
Collapse
|
3
|
Michalko R, Gajski D, Košulič O, Khum W, Michálek O, Pekár S. Association between arthropod densities suggests dominance of top-down control of predator-prey food-webs on pear trees during winter. FOOD WEBS 2022. [DOI: 10.1016/j.fooweb.2022.e00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Suzuki Y, Ikemoto M, Yokoi T. The ontogenetic dietary shift from non-dangerous to dangerous prey in predator-eating predators under capture risk. Ecol Evol 2022; 12:e9609. [PMID: 36514549 PMCID: PMC9731918 DOI: 10.1002/ece3.9609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Evaluating the patterns and generality of ontogenetic dietary shifts (ODSs) contributes to understanding prey-predator interactions and food web dynamics. Numerous studies have focused on predators that target distinctively lower trophic-level organisms. However, the ODS of predators that routinely prey on organisms at similar trophic levels (i.e., predator-eating predators) have been neglected in ODS research. The ODS patterns of predator eaters may not fit into conventional frameworks owing to constraints of potential capture risk (e.g., deadly counterattack from prey) and body size. We aimed to reveal the ODS patterns of predator eaters and determine whether the patterns were affected by body size and capture risk. Assuming that capture risk is a significant factor in ODS patterns, we expected: (1) juvenile araneophagic spiders to forage on non-dangerous prey (insects) and capture larger non-dangerous prey more frequently than dangerous prey (spiders); and (2) as they grow, their prey types will shift from non-dangerous to dangerous prey because larger predators will be able to capture dangerous prey as the optimal food. As a result of field observations, we revealed that the major ODS pattern in these spiders changed from a mixed (both insect and spider) to a spider-dominant diet. The model selection approach showed that this diet shift was partly due to predator size, and the relative importance of predator size was higher than the life stage per se and almost equal to species identity. In these spiders, the body size of spider prey tended to be smaller than that of insects when the predators were small, suggesting that capture risk may be a critical factor in determining the ODS patterns of these predators. Therefore, our study adds to the evidence that the capture risk is crucial in comprehensively understanding the mechanisms determining ODS patterns in natural systems.
Collapse
Affiliation(s)
- Yuya Suzuki
- Laboratory of Conservation Ecology, Graduate School of Life and Environmental SciencesUniversity of TsukubaIbarakiJapan
- The United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
| | - Mito Ikemoto
- Laboratory of Conservation Ecology, Graduate School of Life and Environmental SciencesUniversity of TsukubaIbarakiJapan
- Biodiversity DivisionNational Institute for Environmental StudiesTsukubaJapan
| | - Tomoyuki Yokoi
- Laboratory of Conservation Ecology, Graduate School of Life and Environmental SciencesUniversity of TsukubaIbarakiJapan
| |
Collapse
|
5
|
Michálek O, Gajski D, Pekár S. Winter activity of Clubiona spiders and their potential for pest control. J Therm Biol 2022; 108:103295. [DOI: 10.1016/j.jtherbio.2022.103295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022]
|
6
|
Schmidt-Jeffris RA, Moretti EA, Bergeron PE, Zilnik G. Nontarget Impacts of Herbicides on Spiders in Orchards. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:65-73. [PMID: 34850025 DOI: 10.1093/jee/toab228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Spiders are key predators in many agroecosystems, including orchards. Despite the importance of spiders in biological control, pesticide nontarget effects on this group are poorly described. This is especially true for herbicides, which spiders frequently encounter as they move between the ground cover and tree canopy. We sought to determine the nontarget effects of seven herbicides used in orchards on three species of spiders that are commonly found in Washington state (USA) orchards: Pelegrina aeneola (Curtis) (Araneae: Salticidae), Philodromus cespitum (Walckenaer) (Araneae: Philodromidae), and Phanias watonus (Chamberlin & Ivie) (Araneae: Salticidae). Immature spiders were collected from orchards and used in laboratory assays. Single spiders were placed in vials with dried herbicide residues and mortality was evaluated after 1, 2, and 5 d. We also evaluated herbicide impacts on prey consumption rates and on spider movement using motion-tracking software. Only oxyfluorfen caused significant spider mortality. P. cespitum seemed to be less acutely sensitive to oxyfluorfen than the two salticid species. Several herbicide treatments significantly increased locomotion in P. cespitum, whereas rimsulfuron numerically decreased movement of P. aeneola. Sulfonylurea herbicides (rimsulfuron, halosulfuron) decreased prey consumption of P. aeneola. Our work indicates that although spiders may be less acutely sensitive to some pesticides than beneficial insects, they can be affected by sublethal effects of herbicides. Future work should determine if herbicide applications impact spider abundance in the field and reduce biological control services. In general, more work is needed on the impacts of herbicides on natural enemies.
Collapse
Affiliation(s)
| | - Erica A Moretti
- USDA-ARS, Temperate Tree Fruit and Vegetable Research Unit, Wapato, WA 98951, USA
| | - Paul E Bergeron
- USDA-ARS, Temperate Tree Fruit and Vegetable Research Unit, Wapato, WA 98951, USA
- Department of Entomology, Washington State University, 166 FSHN, 100 Dairy Road, Pullman, WA 99164, USA
| | - Gabriel Zilnik
- USDA-ARS, Temperate Tree Fruit and Vegetable Research Unit, Wapato, WA 98951, USA
| |
Collapse
|
7
|
Müller J, Brandl R, Cadotte MW, Heibl C, Bässler C, Weiß I, Birkhofer K, Thorn S, Seibold S. A replicated study on the response of spider assemblages to regional and local processes. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jörg Müller
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Biocenter University of Würzburg, Glashüttenstraße 5 Rauhenebrach Germany
- Bavarian Forest National Park, Freyunger Str. 2 Grafenau Germany
| | - Roland Brandl
- Department of Ecology ‐ Animal Ecology, Faculty of Biology Philipps‐Universität Marburg, Karl‐von‐Frisch Str. 8 Marburg Germany
| | - Marc W. Cadotte
- Department of Biological Sciences University of Toronto–Scarborough Toronto Canada
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Canada
| | - Christoph Heibl
- Bavarian Forest National Park, Freyunger Str. 2 Grafenau Germany
| | - Claus Bässler
- Conservation Biology, Faculty of Biological Sciences, Institute for Ecology, Evolution and Diversity Goethe‐University Frankfurt Frankfurt am Main Germany
| | - Ingmar Weiß
- Bavarian Forest National Park, Freyunger Str. 2 Grafenau Germany
| | - Klaus Birkhofer
- Department of Ecology Brandenburg University of Technology Cottbus‐Senftenberg, Konrad‐Wachsmann Allee 6 Cottbus Germany
| | - Simon Thorn
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Biocenter University of Würzburg, Glashüttenstraße 5 Rauhenebrach Germany
| | - Sebastian Seibold
- Technical University of Munich Freising Germany
- Berchtesgaden National Park Berchtesgaden Germany
| |
Collapse
|
8
|
Hambäck P, Cirtwill A, García D, Grudzinska-Sterno M, Miñarro M, Tasin M, Yang X, Samnegård U. More intraguild prey than pest species in arachnid diets may compromise biological control in apple orchards. Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2021.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Michalko R, Birkhofer K, Pekár S. Interaction between hunting strategy, habitat type and stratum drive intraguild predation and cannibalism. OIKOS 2021. [DOI: 10.1111/oik.08355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Radek Michalko
- Dept of Forest Ecology, Faculty of Forestry and Wood Technology, Mendel Univ. in Brno Brno Czech Republic
| | - Klaus Birkhofer
- Dept of Ecology, Brandenburg Univ. of Technology Cottbus Germany
| | - Stano Pekár
- Dept of Botany and Zoology, Faculty of Sciences, Masaryk Univ. Brno Czech Republic
| |
Collapse
|
10
|
Saqib HSA, Liang P, You M, Gurr GM. Molecular gut content analysis indicates the inter- and intra-guild predation patterns of spiders in conventionally managed vegetable fields. Ecol Evol 2021; 11:9543-9552. [PMID: 34306641 PMCID: PMC8293772 DOI: 10.1002/ece3.7772] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 12/02/2022] Open
Abstract
Inter- and intra-guild interactions are important in the coexistence of predators and their prey, especially in highly disturbed vegetable cropping systems with sporadic food resources. Assessing the dietary range of a predator taxon characterized by diverse foraging behavior using conventional approaches, such as visual observation and conventional molecular approaches for prey detection, has serious logistical problems. In this study, we assessed the prey compositions and compare the dietary spectrum of a functionally diverge group of predators-spiders-to characterize their trophic interactions and assess biological control potential in Brassica vegetable fields. We used high-throughput sequencing (HTS) and biotic interaction networks to precisely annotate the predation spectrum and highlight the predator-predator and predator-prey interactions. The prey taxa in the gut of all spider families were mainly enriched with insects (including dipterans, coleopterans, orthopterans, hemipterans, and lepidopterans) with lower proportions of arachnids (such as Araneae) along with a wide range of other prey factions. Despite the generalist foraging behavior of spiders, the community structure analysis and interaction networks highlighted the overrepresentation of particular prey taxa in the gut of each spider family, as well as showing the extent of interfamily predation by spiders. Identifying the diverse trophic niche proportions underpins the importance of spiders as predators of pests in highly disturbed agroecosystems. More specifically, combining HTS with advanced ecological community analysis reveals the preferences and biological control potential of particular spider taxa (such as Salticidae against lepidopterans and Pisauridae against dipterans), and so provides a valuable evidence base for targeted conservation biological control efforts in complex trophic networks.
Collapse
Affiliation(s)
- Hafiz Sohaib Ahmed Saqib
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Joint International Research Laboratory of Ecological Pest ControlMinistry of EducationFuzhouChina
- Institute of Applied EcologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Pingping Liang
- College of the Environment and EcologyXiamen UniversityXiamenChina
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Joint International Research Laboratory of Ecological Pest ControlMinistry of EducationFuzhouChina
- Institute of Applied EcologyFujian Agriculture and Forestry UniversityFuzhouChina
- Key Laboratory of Integrated Pest Management for Fujian‐Taiwan CropsMinistry of AgricultureFuzhouChina
| | - Geoff M. Gurr
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan CropsFujian Agriculture and Forestry UniversityFuzhouChina
- Joint International Research Laboratory of Ecological Pest ControlMinistry of EducationFuzhouChina
- Institute of Applied EcologyFujian Agriculture and Forestry UniversityFuzhouChina
- Graham CentreCharles Sturt UniversityOrangeNSWAustralia
| |
Collapse
|
11
|
High Survivorship of First-Generation Monarch Butterfly Eggs to Third Instar Associated with a Diverse Arthropod Community. INSECTS 2021; 12:insects12060567. [PMID: 34205618 PMCID: PMC8234420 DOI: 10.3390/insects12060567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary The eastern migratory population of the monarch butterfly has been the focus of extensive conservation efforts in recent years. However, there are gaps in our knowledge about the survival of first, or spring generation, monarchs in their core areas of Texas, Oklahoma, and Louisiana. This is important because the spring generation represents the first stage of annual recovery from overwinter mortality. It is, therefore, an important stage for monarch conservation efforts. This study showed that, in the context of a complex arthropod community in north Texas, first generation monarch survival was high. The study found that survival was not directly related to predators on the host plant, but was higher on host plants that harbored a greater number and variety of other, non-predatory arthropods. This is possibly because the presence of alternate, preferable prey enabled monarch eggs and larvae to be overlooked by predators. The implication is that, at least in the southern U.S., monarch conservation should consider strategies that promote diverse functional arthropod communities. Abstract Based on surveys of winter roost sites, the eastern migratory population of the monarch butterfly (Danaus plexippus) in North America appears to have declined in the last 20 years and this has prompted the implementation of numerous conservation strategies. However, there is little information on the survivorship of first-generation monarchs in the core area of occupancy in Texas, Oklahoma, and Louisiana where overwinter population recovery begins. The purpose of this study was to determine the survivorship of first-generation eggs to third instars at a site in north Texas and to evaluate host plant arthropods for their effect on survivorship. Survivorship to third instar averaged 13.4% and varied from 11.7% to 15.6% over three years. The host plants harbored 77 arthropod taxa, including 27 predatory taxa. Despite their abundance, neither predator abundance nor predator richness predicted monarch survival. However, host plants upon which monarchs survived often harbored higher numbers of non-predatory arthropod taxa and more individuals of non-predatory taxa. These results suggest that ecological processes may have buffered the effects of predators and improved monarch survival in our study. The creation of diverse functional arthropod communities should be considered for effective monarch conservation, particularly in southern latitudes.
Collapse
|
12
|
Michalko R, Košulič O, Martinek P, Birkhofer K. Disturbance by invasive pathogenic fungus alters arthropod predator-prey food-webs in ash plantations. J Anim Ecol 2021; 90:2213-2226. [PMID: 34013522 DOI: 10.1111/1365-2656.13537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/17/2021] [Indexed: 11/29/2022]
Abstract
According to the disturbance-succession theory, natural disturbances support biodiversity and are expected to increase the complexity of food-webs in forest ecosystems by opening canopies and creating a heterogeneous environment. However, a limited number of studies have investigated the impact of disturbance by invasive pathogenic species and succession on arthropod predator-prey food-webs in forest ecosystems. Hymenoscyphus fraxineus is a pathogenic fungus of ash trees that is invasive in Europe and causes massive dieback, mainly of the common ash Fraxinus excelsior across its native range. Here we investigated how this pathogenic fungus affects food-webs of web-building spiders and their prey in understorey vegetation of ash plantations. In 23 young and middle-aged ash plantations that were distributed along a gradient of infestation by H. fraxineus (29%-86% infestation), we measured the vegetation structure (canopy openness, shrub coverage, herb/grass coverage), the trait composition of local spider communities (web type, body size), the prey availability and the prey intercepted by spider webs. We then evaluated the multivariate prey composition (prey type, body size) and network properties. Hymenoscyphus fraxineus opened the ash tree canopy, which resulted in denser shrub coverage. The dense shrub vegetation changed the composition of web types in local spider communities and increasing fungus infestation resulted in reduced mean body size of spiders. Infestation by H. fraxineus reduced the availability of predaceous Coleoptera and increased the availability of herbivorous Coleoptera as potential prey. The mean body size of captured prey and the per capita capture rates of most prey groups decreased with increasing fungus infestation. Hymenoscyphus fraxineus infestation indirectly reduced the complexity in bipartite networks and the trophic functional complementarity in local web-building spider communities. The plantation age affected the vegetation structure but did not affect the studied food-webs. Forest disturbance by the invasive pathogen affected four trophic levels (plant-herbivore-coleopteran intermediate predator-top predator web-building spiders) and, contrary to the disturbance-succession theory, disturbance by the fungus simplified the web-building spider-prey food-webs. The results support the view that H. fraxineus represents a threat to the biodiversity and ecosystem functioning in the simplified ecosystems of ash plantations.
Collapse
Affiliation(s)
- Radek Michalko
- Department of Forest Ecology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Ondřej Košulič
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Petr Martinek
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Klaus Birkhofer
- Department of Ecology, Brandenburg University of Technology, Cottbus, Germany
| |
Collapse
|
13
|
Michalko R, Gibbons AT, Goodacre SL, Pekár S. Foraging aggressiveness determines trophic niche in a generalist biological control species. Behav Ecol 2021. [DOI: 10.1093/beheco/araa123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Abstract
There is a growing evidence that consistent interindividual differences in behavior, that is, behavioral types, can play an important role in key ecological processes such as predator–prey interactions, which in turn can have direct implications on biological control. Behavioral types of generalist predators may affect these interactions through individual differences in predators’ prey preferences and the breadth of predators’ trophic niches. This study examined how the multivariate nature of behavior, namely foraging aggressiveness, activity level, and risk-taking behavior, determines prey selection and trophic niche of the generalist agrobiont spider Philodromus cespitum. In laboratory experiments, we determined the repeatability of these behaviors and the preference between crickets, moths, fruit flies, and collembolans. We found that all three behaviors were moderately to strongly repeatable but there were no correlations between them, thus they did not form a behavioral syndrome. Only foraging aggressiveness influenced the prey selection of philodromid spiders and the more aggressive individuals had wider trophic niches because they incorporated prey that were more difficult to capture in their diet. In addition, more aggressive individuals killed a greater quantity of particular prey types while other prey types were killed at a similar rate by both aggressive and nonaggressive individuals. The differences in philodromids’ foraging aggressiveness, therefore, affected not only the overall prey density but also resulted in different prey community composition. As pest density and composition can both affect crop performance, further research needs to investigate how the interindividual behavioral differences of generalist natural enemies cascade down on the crops.
Collapse
Affiliation(s)
- Radek Michalko
- Department of Forest Ecology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska, Brno, Czech Republic
| | - Alastair T Gibbons
- School of Life Sciences, University of Nottingham, University Park, Nottingham, UK
| | - Sara L Goodacre
- School of Life Sciences, University of Nottingham, University Park, Nottingham, UK
| | - Stano Pekár
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlarska, Brno, Czech Republic
| |
Collapse
|