1
|
Sambade IM, Estêvão J, Pampín M, Cruz A, Guévélou E, Blanco A, Câmara F, Gómez‐Garrido J, Cruz F, Bargelloni L, Carboni S, Alioto T, Costas B, Fernández‐Boo S, Martínez P. Signatures of Selection for Resistance/Tolerance to Perkinsus olseni in Grooved Carpet Shell Clam ( Ruditapes decussatus) Using a Population Genomics Approach. Evol Appl 2025; 18:e70106. [PMID: 40365167 PMCID: PMC12070250 DOI: 10.1111/eva.70106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
The grooved carpet shell clam (Ruditapes decussatus) is a bivalve of high commercial value distributed throughout the European coast. Its production has suffered a decline caused by different factors, especially by the parasite Perkinsus olsenii. Improving production of R. decussatus requires genomic resources to ascertain the genetic factors underlying resistance/tolerance to P. olsenii. In this study, the first reference genome of R. decussatus was assembled through long- and short-read sequencing (1677 contigs; 1.386 Mb) and further scaffolded at chromosome level with Hi-C (19 superscaffolds; 95.4% of assembly). Repetitive elements were identified (32%) and masked for annotation of 38,276 coding- and 13,056 non-coding genes. This genome was used as a reference to develop a 2bRAD-Seq 13,438 SNP panel for a genomic screening on six shellfish beds distributed across the Atlantic Ocean and Mediterranean Sea. Beds were selected by perkinsosis prevalence and the infection level was individually evaluated in all the samples. Genetic diversity was significantly higher in the Mediterranean than in the Atlantic region. The main genetic breakage was detected between those regions (FST = 0.224), being the Mediterranean more heterogeneous than the Atlantic. Several loci under divergent selection (394 outliers; 261 genomic windows) were detected across shellfish beds. Samples were also inspected to detect signals of selection for resistance/tolerance to P. olsenii by using infection-level and population-genomics approaches, and 90 common divergent outliers for resistance/tolerance to perkinsosis were identified and used for gene mining. Candidate genes and markers identified provide invaluable information for controlling perkinsosis and for improving production of the grooved carpet shell clam.
Collapse
Affiliation(s)
- Inés M. Sambade
- Department of Zoology, Genetics and Physical Anthropology, Facultad de Veterinaria, Campus TerraUniversidade de Santiago de CompostelaLugoSpain
| | - João Estêvão
- Department of Zoology, Genetics and Physical Anthropology, Facultad de Veterinaria, Campus TerraUniversidade de Santiago de CompostelaLugoSpain
- Aquatic Animal Health (A2S)CIIMAR—University of PortoPortoPortugal
| | - Marina Pampín
- Department of Zoology, Genetics and Physical Anthropology, Facultad de Veterinaria, Campus TerraUniversidade de Santiago de CompostelaLugoSpain
| | | | | | - Andrés Blanco
- Department of Zoology, Genetics and Physical Anthropology, Facultad de Veterinaria, Campus TerraUniversidade de Santiago de CompostelaLugoSpain
| | - Francisco Câmara
- Centre Nacional d'Anàlisi Genòmica (CNAG)BarcelonaSpain
- Universitat de Barcelona (UB)BarcelonaSpain
| | - Jessica Gómez‐Garrido
- Centre Nacional d'Anàlisi Genòmica (CNAG)BarcelonaSpain
- Universitat de Barcelona (UB)BarcelonaSpain
| | - Fernando Cruz
- Centre Nacional d'Anàlisi Genòmica (CNAG)BarcelonaSpain
- Universitat de Barcelona (UB)BarcelonaSpain
| | | | | | - Tyler Alioto
- Centre Nacional d'Anàlisi Genòmica (CNAG)BarcelonaSpain
- Universitat de Barcelona (UB)BarcelonaSpain
| | - Benjamin Costas
- Aquatic Animal Health (A2S)CIIMAR—University of PortoPortoPortugal
| | | | - Paulino Martínez
- Department of Zoology, Genetics and Physical Anthropology, Facultad de Veterinaria, Campus TerraUniversidade de Santiago de CompostelaLugoSpain
| |
Collapse
|
2
|
Vera M, Wilmes SB, Maroso F, Hermida M, Blanco A, Casanova A, Iglesias D, Cao A, Culloty SC, Mahony K, Orvain F, Bouza C, Robins PE, Malham SK, Lynch S, Villalba A, Martínez P. Heterogeneous microgeographic genetic structure of the common cockle (Cerastoderma edule) in the Northeast Atlantic Ocean: biogeographic barriers and environmental factors. Heredity (Edinb) 2023; 131:292-305. [PMID: 37596415 PMCID: PMC10539317 DOI: 10.1038/s41437-023-00646-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023] Open
Abstract
Knowledge of genetic structure at the finest level is essential for the conservation of genetic resources. Despite no visible barriers limiting gene flow, significant genetic structure has been shown in marine species. The common cockle (Cerastoderma edule) is a bivalve of great commercial and ecological value inhabiting the Northeast Atlantic Ocean. Previous population genomics studies demonstrated significant structure both across the Northeast Atlantic, but also within small geographic areas, highlighting the need to investigate fine-scale structuring. Here, we analysed two geographic areas that could represent opposite models of structure for the species: (1) the SW British Isles region, highly fragmented due to biogeographic barriers, and (2) Galicia (NW Spain), a putative homogeneous region. A total of 9250 SNPs genotyped by 2b-RAD on 599 individuals from 22 natural beds were used for the analysis. The entire SNP dataset mostly confirmed previous observations related to genetic diversity and differentiation; however, neutral and divergent SNP outlier datasets enabled disentangling physical barriers from abiotic environmental factors structuring both regions. While Galicia showed a homogeneous structure, the SW British Isles region was split into four reliable genetic regions related to oceanographic features and abiotic factors, such as sea surface salinity and temperature. The information gathered supports specific management policies of cockle resources in SW British and Galician regions also considering their particular socio-economic characteristics; further, these new data will be added to those recently reported in the Northeast Atlantic to define sustainable management actions across the whole distribution range of the species.
Collapse
Affiliation(s)
- Manuel Vera
- Department of Zoology, Genetics and Physics Anthropology, ACUIGEN Group, Faculty of Veterinary, Campus Terra, University of Santiago de Compostela, 27002, Lugo, Spain.
| | - Sophie B Wilmes
- School of Ocean Sciences, Marine Centre Wales, Bangor University, Menai Bridge, UK
| | - Francesco Maroso
- Department of Zoology, Genetics and Physics Anthropology, ACUIGEN Group, Faculty of Veterinary, Campus Terra, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Miguel Hermida
- Department of Zoology, Genetics and Physics Anthropology, ACUIGEN Group, Faculty of Veterinary, Campus Terra, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Andrés Blanco
- Department of Zoology, Genetics and Physics Anthropology, ACUIGEN Group, Faculty of Veterinary, Campus Terra, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Adrián Casanova
- Department of Zoology, Genetics and Physics Anthropology, ACUIGEN Group, Faculty of Veterinary, Campus Terra, University of Santiago de Compostela, 27002, Lugo, Spain
| | - David Iglesias
- Centro de Investigacións Mariñas, Consellería do Mar, Xunta de Galicia, 36620, Vilanova de Arousa, Spain
| | - Asunción Cao
- Centro de Investigacións Mariñas, Consellería do Mar, Xunta de Galicia, 36620, Vilanova de Arousa, Spain
| | - Sarah C Culloty
- School of Biological, Earth and Environmental Sciences/Aquaculture and Fisheries Development Centre, University College Cork, North Mall, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
- MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland
| | - Kate Mahony
- School of Biological, Earth and Environmental Sciences/Aquaculture and Fisheries Development Centre, University College Cork, North Mall, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| | - Francis Orvain
- UNICAEN - UMR BOREA "Biologie des ORganismes et Ecosystèmes Aquatiques" MNHN, UPMC, UCBN, CNRS-7208, IRD-207, University of Caen, Caen, France
| | - Carmen Bouza
- Department of Zoology, Genetics and Physics Anthropology, ACUIGEN Group, Faculty of Veterinary, Campus Terra, University of Santiago de Compostela, 27002, Lugo, Spain
| | - Peter E Robins
- School of Ocean Sciences, Marine Centre Wales, Bangor University, Menai Bridge, UK
| | - Shelagh K Malham
- School of Ocean Sciences, Marine Centre Wales, Bangor University, Menai Bridge, UK
| | - Sharon Lynch
- School of Biological, Earth and Environmental Sciences/Aquaculture and Fisheries Development Centre, University College Cork, North Mall, Cork, Ireland
- Environmental Research Institute, University College Cork, Cork, Ireland
| | - Antonio Villalba
- Centro de Investigacións Mariñas, Consellería do Mar, Xunta de Galicia, 36620, Vilanova de Arousa, Spain
- Departamento de Ciencias de la Vida, Universidad de Alcalá, 28871, Alcalá de Henares, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque Country, Spain
| | - Paulino Martínez
- Department of Zoology, Genetics and Physics Anthropology, ACUIGEN Group, Faculty of Veterinary, Campus Terra, University of Santiago de Compostela, 27002, Lugo, Spain.
| |
Collapse
|
3
|
Estêvão J, Osorio H, Costas B, Cruz A, Fernández-Boo S. Search for new biomarkers of tolerance to Perkinsus olseni parasite infection in Ruditapes decussatus clams. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108566. [PMID: 36736640 DOI: 10.1016/j.fsi.2023.108566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
The grooved carpet shell (Ruditapes decussatus) is a clam species with high economic and social importance in several European and Mediterranean countries. Production of this species suffered a decline caused by biotic (parasite infection) and abiotic factors (environmental factors, stress, poor management methods and intensive culture of the introduced species Ruditapes philippinarum). The protozoan parasite Perkinsus olseni is also responsible for the decline of production, being nowadays one of the major issues for clam culture. Molecular biomarkers that might represent tolerance of R. decussatus to P. olseni have already been uncovered, shedding light in a possible production improvement by selecting those clams with a strongest immune response. In the present study, new tolerance biomarkers to P. olseni infection in R. decussatus were identified. The haemolymph proteomic profiles of naturally non/low-infected (tolerant) and highly-infected (susceptible) clams by the parasite across several heavy affected areas of Europe were characterized through a shotgun proteomics approach. Also, the mechanisms that might be involved in the responses against the disease in chronic infections were explored. Proteins related to energy restoration and balance, metabolic regulation, energy accumulation, ROS production, lysosomal activity, amino acid synthesis, proteolytic activity, iron regulation, iron withholding, and immune response modulation were significantly regulated in susceptible clams. In the tolerant group, proteins related to phagocytosis regulation, control of cell growth and proliferation, gonadal maturation, regulation of apoptosis, growth modulation, response to oxidative stress, iron regulation, shell development and metabolic regulation were significantly expressed. In summary, the protein expression profile of tolerant individuals suggests that an efficient pathogen elimination mechanism coupled to a better metabolic regulation leads to a tolerance to the parasite infection by limiting the spread through the tissues.
Collapse
Affiliation(s)
- João Estêvão
- Animal Health and Aquaculture (A2S), CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, University of Porto, Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Hugo Osorio
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal; Ipatimup-Institute of Molecular Pathology and Immunology of the University of Porto, University of Porto, Porto, Portugal
| | - Benjamin Costas
- Animal Health and Aquaculture (A2S), CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, University of Porto, Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Andreia Cruz
- Oceano Fresco S.A, Porto de Abrigo, 2450-075, Nazaré, Portugal
| | - Sergio Fernández-Boo
- Animal Health and Aquaculture (A2S), CIIMAR - Centro Interdisciplinar de Investigação Marinha e Ambiental, University of Porto, Porto, Portugal.
| |
Collapse
|