1
|
Menéndez González M. Mechanical filtration of the cerebrospinal fluid: procedures, systems, and applications. Expert Rev Med Devices 2023; 20:199-207. [PMID: 36799735 DOI: 10.1080/17434440.2023.2181695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
INTRODUCTION Mechanical methods aimed at the filtration of the cerebrospinal fluid (CSF) are a group of therapies that have been proposed to treat neurological conditions where pathogens are present in the CSF. Even though the industry of medical devices has not been very active in this field, there is a lack of systematization of the different systems and procedures that can be applied. AREAS COVERED First, we systematize the classification and definitions of procedures and systems for mechanical filtration of the CSF. Then, we made a literature review in search of clinical or preclinical studies where any system of mechanical CSF clearance was proposed or applied. EXPERT OPINION We found mechanical filtration of the CSF has been explored in subarachnoid hemorrhage, CNS infections (bacterial, viral, and fungal), meningeal carcinomatosis, multiple sclerosis, autoimmune encephalitis, and polyradiculomyelitis. Brain aging and neurodegenerative diseases are additional potential conditions of interest. While there is some preliminary positive evidence for many of these conditions, more advanced systems, detailed descriptions of procedures, and rigorous validations are needed to make these therapies a reality in the next decades.
Collapse
Affiliation(s)
- Manuel Menéndez González
- Departamento de Medicina, Universidad de Oviedo, Oviedo, Spain.,Department of Neurology, Hospital Universitario Central de Asturias, Oviedo, Spain.,Grupo de Investigación Clínica-Básica en Neurología, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| |
Collapse
|
2
|
Coto-Vilcapoma MA, Castilla-Silgado J, Fernández-García B, Pinto-Hernández P, Cipriani R, Capetillo-Zarate E, Menéndez-González M, Álvarez-Vega M, Tomás-Zapico C. New, Fully Implantable Device for Selective Clearance of CSF-Target Molecules: Proof of Concept in a Murine Model of Alzheimer’s Disease. Int J Mol Sci 2022; 23:ijms23169256. [PMID: 36012525 PMCID: PMC9408974 DOI: 10.3390/ijms23169256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
We have previously proposed a radical change in the current strategy to clear pathogenic proteins from the central nervous system (CNS) based on the cerebrospinal fluid (CSF)-sink therapeutic strategy, whereby pathogenic proteins can be removed directly from the CNS via CSF. To this aim, we designed and manufactured an implantable device for selective and continuous apheresis of CSF enabling, in combination with anti-amyloid-beta (Aβ) monoclonal antibodies (mAb), the clearance of Aβ from the CSF. Here, we provide the first proof of concept in the APP/PS1 mouse model of Alzheimer’s disease (AD). Devices were implanted in twenty-four mice (seventeen APP/PS1 and seven Wt) with low rates of complications. We confirmed that the apheresis module is permeable to the Aβ peptide and impermeable to mAb. Moreover, our results showed that continuous clearance of soluble Aβ from the CSF for a few weeks decreases cortical Aβ plaques. Thus, we conclude that this intervention is feasible and may provide important advantages in terms of safety and efficacy.
Collapse
Affiliation(s)
- María Almudena Coto-Vilcapoma
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain
| | - Juan Castilla-Silgado
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain
| | - Benjamín Fernández-García
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain
- Departamento de Morfología y Biología Celular, Área de Anatomía, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Paola Pinto-Hernández
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Raffaela Cipriani
- Achucarro Basque Center for Neuroscience, Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU), 48940 Leioa, Spain
| | - Estibaliz Capetillo-Zarate
- Achucarro Basque Center for Neuroscience, Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU), 48940 Leioa, Spain
- Centro de Investigación en Red de Enfermedades, Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Manuel Menéndez-González
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain
- Servicio de Neurología, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Departamento de Medicina Área de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
- Correspondence:
| | - Marco Álvarez-Vega
- Servicio de Neurocirugía, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Departamento de Cirugía, Área de Cirugía, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Cristina Tomás-Zapico
- Departamento de Biología Funcional, Área de Fisiología, Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain
| |
Collapse
|
3
|
Schreiner TG, Popescu BO. Amyloid Beta Dynamics in Biological Fluids-Therapeutic Impact. J Clin Med 2021; 10:5986. [PMID: 34945282 PMCID: PMC8706225 DOI: 10.3390/jcm10245986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 12/21/2022] Open
Abstract
Despite the significant impact of Alzheimer's disease (AD) at individual and socioeconomic levels and the numerous research studies carried out on this topic over the last decades, the treatments available in daily clinical practice remain less than satisfactory. Among the accepted etiopathogenic hypotheses, the amyloidogenic pathway theory, although intensively studied and even sometimes controversial, is still providing relevant theoretical elements for understanding the etiology of AD and for the further development of possible therapeutic tools. In this sense, this review aims to offer new insights related to beta amyloid (Aβ), an essential biomarker in AD. First the structure and function of Aβ in normal and pathological conditions are presented in detail, followed by a discussion on the dynamics of Aβ at the level of different biological compartments. There is focus on Aβ elimination modalities at central nervous system (CNS) level, and clearance via the blood-brain barrier seems to play a crucial/dominant role. Finally, different theoretical and already-applied therapeutic approaches for CNS Aβ elimination are presented, including the recent "peripheral sink therapeutic strategy" and "cerebrospinal fluid sinks therapeutic strategy". These data outline the need for a multidisciplinary approach designed to deliver a solution to stimulate Aβ clearance in more direct ways, including from the cerebrospinal fluid level.
Collapse
Affiliation(s)
- Thomas Gabriel Schreiner
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania;
- Neurology Department, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania
- Department of Electrical Measurements and Materials, Faculty of Electrical Engineering and Information Technology, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania
| | - Bogdan Ovidiu Popescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 050474 Bucharest, Romania;
- Neurology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Laboratory of Cell Biology, Neurosciences and Experimental Myology, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
4
|
Khani M, Sass LR, Sharp MK, McCabe AR, Zitella Verbick LM, Lad SP, Martin BA. In vitro and numerical simulation of blood removal from cerebrospinal fluid: comparison of lumbar drain to Neurapheresis therapy. Fluids Barriers CNS 2020; 17:23. [PMID: 32178689 PMCID: PMC7077023 DOI: 10.1186/s12987-020-00185-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/06/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Blood removal from cerebrospinal fluid (CSF) in post-subarachnoid hemorrhage patients may reduce the risk of related secondary brain injury. We formulated a computational fluid dynamics (CFD) model to investigate the impact of a dual-lumen catheter-based CSF filtration system, called Neurapheresis™ therapy, on blood removal from CSF compared to lumbar drain. METHODS A subject-specific multiphase CFD model of CSF system-wide solute transport was constructed based on MRI measurements. The Neurapheresis catheter geometry was added to the model within the spinal subarachnoid space (SAS). Neurapheresis flow aspiration and return rate was 2.0 and 1.8 mL/min, versus 0.2 mL/min drainage for lumbar drain. Blood was modeled as a bulk fluid phase within CSF with a 10% initial tracer concentration and identical viscosity and density as CSF. Subject-specific oscillatory CSF flow was applied at the model inlet. The dura and spinal cord geometry were considered to be stationary. Spatial-temporal tracer concentration was quantified based on time-average steady-streaming velocities throughout the domain under Neurapheresis therapy and lumbar drain. To help verify CFD results, an optically clear in vitro CSF model was constructed with fluorescein used as a blood surrogate. Quantitative comparison of numerical and in vitro results was performed by linear regression of spatial-temporal tracer concentration over 24-h. RESULTS After 24-h, tracer concentration was reduced to 4.9% under Neurapheresis therapy compared to 6.5% under lumbar drain. Tracer clearance was most rapid between the catheter aspiration and return ports. Neurapheresis therapy was found to have a greater impact on steady-streaming compared to lumbar drain. Steady-streaming in the cranial SAS was ~ 50× smaller than in the spinal SAS for both cases. CFD results were strongly correlated with the in vitro spatial-temporal tracer concentration under Neurapheresis therapy (R2 = 0.89 with + 2.13% and - 1.93% tracer concentration confidence interval). CONCLUSION A subject-specific CFD model of CSF system-wide solute transport was used to investigate the impact of Neurapheresis therapy on tracer removal from CSF compared to lumbar drain over a 24-h period. Neurapheresis therapy was found to substantially increase tracer clearance compared to lumbar drain. The multiphase CFD results were verified by in vitro fluorescein tracer experiments.
Collapse
Affiliation(s)
- Mohammadreza Khani
- Department of Biological Engineering, The University of Idaho, 875 Perimeter Drive, MS 0904, Moscow, ID, 83844-0904, USA
| | - Lucas R Sass
- Department of Biological Engineering, The University of Idaho, 875 Perimeter Drive, MS 0904, Moscow, ID, 83844-0904, USA
| | - M Keith Sharp
- Department of Mechanical Engineering, University of Louisville, 332 Eastern Pkwy, Louisville, KY, 40292, USA
| | - Aaron R McCabe
- Minnetronix Neuro, Inc., 1635 Energy Park Dr, Saint Paul, MN, 55108, USA
| | | | - Shivanand P Lad
- Department of Neurosurgery, Duke University School of Medicine, 3100 Tower Blvd, Durham, NC, 27707, USA
| | - Bryn A Martin
- Department of Biological Engineering, The University of Idaho, 875 Perimeter Drive, MS 0904, Moscow, ID, 83844-0904, USA.
| |
Collapse
|
5
|
Therapeutic Potential of Direct Clearance of the Amyloid-β in Alzheimer's Disease. Brain Sci 2020; 10:brainsci10020093. [PMID: 32050618 PMCID: PMC7071829 DOI: 10.3390/brainsci10020093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 12/19/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by deposition and accumulation of amyloid-β (Aβ) and its corresponding plaques within the brain. Although much debate exists whether these plaques are the cause or the effect of AD, the accumulation of Aβ is linked with the imbalance between the production and clearance of Aβ. The receptor for advanced glycation endproducts (RAGE) facilitates entry of free Aβ from the peripheral stream. Conversely, lipoprotein receptor-related protein 1 (LRP1), located in the abluminal side at the blood–brain barrier mediates the efflux of Aβ. Research on altering the rates of clearance of Aβ by targeting these two pathways has been extensively study. Additionally, a cerebrospinal fluid (CSF) circulation assistant device has also been evaluated as an approach to increase solute concentration in the CSF via mechanical drainage, to allow for removal of Aβ from the brain. Herein, we provide a brief review of these approaches that are designed to re-establish a homeostatic Aβ balance in the brain.
Collapse
|
6
|
Tokuda E, Takei YI, Ohara S, Fujiwara N, Hozumi I, Furukawa Y. Wild-type Cu/Zn-superoxide dismutase is misfolded in cerebrospinal fluid of sporadic amyotrophic lateral sclerosis. Mol Neurodegener 2019; 14:42. [PMID: 31744522 PMCID: PMC6862823 DOI: 10.1186/s13024-019-0341-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023] Open
Abstract
Background A subset of familial forms of amyotrophic lateral sclerosis (ALS) are caused by mutations in the gene coding Cu/Zn-superoxide dismutase (SOD1). Mutant SOD1 proteins are susceptible to misfolding and abnormally accumulated in spinal cord, which is most severely affected in ALS. It, however, remains quite controversial whether misfolding of wild-type SOD1 is involved in more prevalent sporadic ALS (sALS) cases without SOD1 mutations. Methods Cerebrospinal fluid (CSF) from patients including sALS as well as several other neurodegenerative diseases and non-neurodegenerative diseases was examined with an immunoprecipitation assay and a sandwich ELISA using antibodies specifically recognizing misfolded SOD1. Results We found that wild-type SOD1 was misfolded in CSF from all sALS cases examined in this study. The misfolded SOD1 was also detected in CSF from a subset of Parkinson’s disease and progressive supranuclear palsy, albeit with smaller amounts than those in sALS. Furthermore, the CSF samples containing the misfolded SOD1 exhibited significant toxicity toward motor neuron-like NSC-34 cells, which was ameliorated by removal of the misfolded wild-type SOD1 with immunoprecipitation. Conclusions Taken together, we propose that misfolding of wild-type SOD1 in CSF is a common pathological process of ALS cases regardless of SOD1 mutations.
Collapse
Affiliation(s)
- Eiichi Tokuda
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University, Yokohama, 223-8522, Japan
| | - Yo-Ichi Takei
- Department of Neurology, Matsumoto Medical Center, Matsumoto, 399-0021, Japan
| | - Shinji Ohara
- Department of Neurology, Matsumoto Medical Center, Matsumoto, 399-0021, Japan.,Department of Neurology, Iida Hospital, Iida, 395-8505, Japan
| | - Noriko Fujiwara
- Department of Biochemistry, Hyogo College of Medicine, Nishinomiya, 663-8501, Japan
| | - Isao Hozumi
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, Gifu, 501-1196, Japan.,Department of Neurology and Geriatrics, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Yoshiaki Furukawa
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University, Yokohama, 223-8522, Japan.
| |
Collapse
|
7
|
Menendez-Gonzalez M, Gasparovic C. Albumin Exchange in Alzheimer's Disease: Might CSF Be an Alternative Route to Plasma? Front Neurol 2019; 10:1036. [PMID: 31681137 PMCID: PMC6813234 DOI: 10.3389/fneur.2019.01036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022] Open
Abstract
Amyloid β (Aβ) in brain parenchyma is thought to play a central role in the pathogenesis of Alzheimer's disease (AD). Aβ is transported from the brain to the plasma via complex transport mechanisms at the blood-brain barrier (BBB). About 90-95% of plasma Aβ may be bound to albumin. Replacement of serum albumin in plasma has been proposed as a promising therapy for AD. However, the efficacy of this approach may be compromised by altered BBB Aβ receptors in AD, as well as multiple pools of Aβ from other organs in exchange with plasma Aβ, competing for albumin binding sites. The flow of interstitial fluid (ISF) into cerebrospinal fluid (CSF) is another major route of Aβ clearance. Though the concentration of albumin in CSF is much lower than in plasma, the mixing of CSF with ISF is not impeded by a highly selective barrier and, hence, Aβ in the two pools is in more direct exchange. Furthermore, unlike in plasma, Aβ in CSF is not in direct exchange with multiple organ sources of Aβ. Here we consider albumin replacement in CSF as an alternative method for therapeutic brain Aβ removal and describe the possible advantages and rationale supporting this hypothesis.
Collapse
Affiliation(s)
- Manuel Menendez-Gonzalez
- Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
- Department of Neurology, Hospital Universitario Central de Asturias, Oviedo, Spain
- Department of Medicine, Universidad de Oviedo, Oviedo, Spain
| | | |
Collapse
|
8
|
Menendez-Gonzalez M, Padilla-Zambrano HS, Alvarez G, Capetillo-Zarate E, Tomas-Zapico C, Costa A. Targeting Beta-Amyloid at the CSF: A New Therapeutic Strategy in Alzheimer's Disease. Front Aging Neurosci 2018; 10:100. [PMID: 29713273 PMCID: PMC5911461 DOI: 10.3389/fnagi.2018.00100] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/26/2018] [Indexed: 12/17/2022] Open
Abstract
Although immunotherapies against the amyloid-β (Aβ) peptide tried so date failed to prove sufficient clinical benefit, Aβ still remains the main target in Alzheimer’s disease (AD). This article aims to show the rationale of a new therapeutic strategy: clearing Aβ from the CSF continuously (the “CSF-sink” therapeutic strategy). First, we describe the physiologic mechanisms of Aβ clearance and the resulting AD pathology when these mechanisms are altered. Then, we review the experiences with peripheral Aβ-immunotherapy and discuss the related hypothesis of the mechanism of action of “peripheral sink.” We also present Aβ-immunotherapies acting on the CNS directly. Finally, we introduce alternative methods of removing Aβ including the “CSF-sink” therapeutic strategy. As soluble peptides are in constant equilibrium between the ISF and the CSF, altering the levels of Aβ oligomers in the CSF would also alter the levels of such proteins in the brain parenchyma. We conclude that interventions based in a “CSF-sink” of Aβ will probably produce a steady clearance of Aβ in the ISF and therefore it may represent a new therapeutic strategy in AD.
Collapse
Affiliation(s)
- Manuel Menendez-Gonzalez
- Servicio de Neurologia, Hospital Universitario Central de Asturias, Oviedo, Spain.,Department of Cellular Morphology and Biology, University of Oviedo, Oviedo, Spain.,Instituto de Investigacion Sanitaria del Principado de Asturias, Oviedo, Spain
| | | | | | - Estibaliz Capetillo-Zarate
- Departamento de Neurociencias, Universidad del Pais Vasco (UPV/EHU), Leioa, Spain.,El Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Cristina Tomas-Zapico
- Instituto de Investigacion Sanitaria del Principado de Asturias, Oviedo, Spain.,Department of Functional Biology, University of Oviedo, Oviedo, Spain
| | - Agustin Costa
- Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
| |
Collapse
|
9
|
Menéndez González M. Mechanical Dilution of Beta-amyloid Peptide and Phosphorylated Tau Protein in Alzheimer's Disease: Too Simple to be True? Cureus 2017; 9:e1062. [PMID: 28382239 PMCID: PMC5370200 DOI: 10.7759/cureus.1062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The neuropathology of Alzheimer's disease (AD) is characterized by the widespread accumulation of neuritic plaques and neurofibrillary tangles composed of deposits of beta-amyloid peptide (Aβ) and abnormally phosphorylated tau protein (phospho-tau) respectively. Considerable effort has been expended to identify methods to retard the deposition of these proteins or to enhance their clearance. It is strikingly surprising that until now, very few researchers have attempted to remove these proteins using mechanical procedures. In this article, we start by showing the rationale of mechanical dilution of cerebrospinal fluid (CSF) as a therapeutic approach in AD. Then, we present models of implantable systems allowing mechanical dilution of CSF by means of CSF replacement and CSF filtration (liquorpheresis). We conclude that even though this approach seems simplistic, it is feasible and deserves exploration.
Collapse
|