1
|
Viswanathan VK, Ghoshal AG, Mohan A, Patil K, Bhargave C, Choudhari S, Mehta S. Patient Profile-Based Management with Nintedanib in Patients with Idiopathic Pulmonary Fibrosis. Pulm Ther 2024; 10:377-409. [PMID: 39340742 PMCID: PMC11573957 DOI: 10.1007/s41030-024-00271-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
A severe and progressive interstitial lung disease (ILD) known as idiopathic pulmonary fibrosis (IPF) has an unknown etiology with poorly defined mechanisms of development. Among the currently prescribed pharmacological interventions for IPF, nintedanib demonstrates the ability to decelerate the deterioration of lung function and yield positive clinical outcomes. Multiple randomized placebo-controlled trials have confirmed the efficacy and acceptable safety profile of nintedanib. Real-world evidence studies also support the use of nintedanib in IPF, being an efficient and well-tolerated treatment option. It has the potential to stabilize the disease progression in patients with ILD. Patients with IPF frequently have comorbidities like diabetes and hypertension, which can exacerbate the course of disease, reduce quality of life, and decrease treatment adherence. For well-informed decision-making, it is important for healthcare professionals to recognize the position of nintedanib therapy in IPF with comorbidities. The gastrointestinal adverse effects, notably diarrhea, dominate the nintedanib safety profile. These can be effectively controlled by closely monitoring side effects, administering anti-diarrheal and anti-emetic drugs, reducing the nintedanib dose, and discontinuing it in case of severe symptoms with an option to reintroduce the treatment after side effects subside. Symptomatic interventions and monitoring of liver enzymes may reduce the occurrence of permanent treatment discontinuations.
Collapse
Affiliation(s)
| | - Aloke G Ghoshal
- National Allergy Asthma Bronchitis Institute, Kolkata, West Bengal, India
| | - Anant Mohan
- Department of Pulmonary, Critical Care & Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Ketaki Patil
- Medical Affairs & Clinical Research, Sun Pharma Laboratories Limited, Mumbai, India.
| | - Chaitanya Bhargave
- Medical Affairs & Clinical Research, Sun Pharma Laboratories Limited, Mumbai, India
| | - Sanjay Choudhari
- Medical Affairs & Clinical Research, Sun Pharma Laboratories Limited, Mumbai, India
| | - Suyog Mehta
- Medical Affairs & Clinical Research, Sun Pharma Laboratories Limited, Mumbai, India
| |
Collapse
|
2
|
Gu X, Liu Z, Shan S, Ren T, Wang S. Airway basal cell‑derived exosomes suppress epithelial‑mesenchymal transition of lung cells by inhibiting the expression of ANO1. Exp Ther Med 2024; 27:219. [PMID: 38590572 PMCID: PMC11000454 DOI: 10.3892/etm.2024.12507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/08/2024] [Indexed: 04/10/2024] Open
Abstract
Disruption of the epithelial-mesenchymal transition (EMT) of activated lung cells is an important strategy to inhibit the progression of idiopathic pulmonary fibrosis (IPF). The present study investigated the role of exosomes derived from airway basal cells on EMT of lung cells and elucidate the underlying mechanism. Exosomes were characterized by nanoparticle tracking analysis, transmission electron microscopy imaging and markers detection. The role of exosome on the EMT of lung epithelial cells and lung fibroblasts induced by TGF-β1 was detected. RNA sequencing screened dysregulated genes in exosome-treated group, followed by the bioinformatical analysis. One of the candidates, anoctamin-1 (ANO1), was selected for further gain-and-loss phenotype assays. A bleomycin-induced pulmonary fibrosis model was used to evaluate the treatment effect of exosomes. Exosomes were round-like and positively expressed CD63 and tumor susceptibility gene 101 protein. Treatment with exosomes inhibited the EMT of lung cells activated by TGF-β1. 4158 dysregulated genes were identified in exosome-treated group under the threshold of |log2 fold-change| value >1 and they were involved in the metabolism of various molecules, as well as motility-related biological processes. A key gene, ANO1, was verified by reverse transcription-quantitative PCR, whose overexpression induced the EMT of lung cells. By contrast, ANO1 knockdown reversed the EMT induced by TGF-β1. In vivo assay indicated that exosome treatment ameliorated pulmonary fibrosis and inhibited the upregulation of ANO1 induced by bleomycin. In conclusion, airway basal cell-derived exosomes suppressed the EMT of lung cells via the downregulation of ANO1. These exosomes represent a potential therapeutic option for patients with IPF.
Collapse
Affiliation(s)
- Xiaohua Gu
- Department of Respiratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Xuhui, Shanghai 200233, P.R. China
| | - Zeyu Liu
- Department of Respiratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Xuhui, Shanghai 200233, P.R. China
| | - Shan Shan
- Department of Respiratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Xuhui, Shanghai 200233, P.R. China
| | - Tao Ren
- Department of Respiratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Xuhui, Shanghai 200233, P.R. China
| | - Shaoyang Wang
- Department of Respiratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Xuhui, Shanghai 200233, P.R. China
| |
Collapse
|
3
|
Martins RS, Hussain H, Chaudry M, Rizvi NA, Mustafa MA, Ayub B, Aamdani SS, Rehman AA, Pervez A, Nadeem S, Khalid R, Ali AS, Shahid S, Zubairi ABS, Haider AH, Irfan M. GRADE-ADOLOPMENT of clinical practice guidelines and creation of clinical pathways for the primary care management of chronic respiratory conditions in Pakistan. BMC Pulm Med 2023; 23:123. [PMID: 37069600 PMCID: PMC10111762 DOI: 10.1186/s12890-023-02409-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/31/2023] [Indexed: 04/19/2023] Open
Abstract
INTRODUCTION In Pakistan, chronic respiratory conditions contribute a large burden of morbidity and mortality. A major reason for this is the lack of availability of local evidence-based clinical practice guidelines (EBCPGs) in Pakistan, particularly at the primary care level. Thus, we developed EBCPGs and created clinical diagnosis and referral pathways for the primary care management of chronic respiratory conditions in Pakistan. METHODS The source guidelines were selected by two local expert pulmonologists after a thorough literature review on PubMed and Google Scholar from 2010 to December 2021. The source guidelines covered idiopathic pulmonary fibrosis, asthma, chronic obstructive pulmonary disorders, and bronchiectasis. The GRADE-ADOLOPMENT process consists of three key elements: adoption (using recommendations as is or with minor changes), adaptation (effective context-specific changes to recommendations) or additions (including new recommendations to fill a gap in the EBCPG). We employed the GRADE-ADOLOPMENT process to adopt, adapt, adopt with minor changes, or exclude recommendations from a source guideline. Additional recommendations were added to the clinical pathways based on a best-evidence review process. RESULTS 46 recommendations were excluded mainly due to the unavailability of recommended management in Pakistan and scope beyond the practice of general physicians. Clinical diagnosis and referral pathways were designed for the four chronic respiratory conditions, explicitly delineating the role of primary care practitioners in the diagnosis, basic management, and timely referral of patients. Across the four conditions, 18 recommendations were added (seven for IPF, three for bronchiectasis, four for COPD, and four for asthma). CONCLUSION The widespread use of the newly created EBCPGs and clinical pathways in the primary healthcare system of Pakistan can help alleviate the morbidity and mortality related to chronic respiratory conditions disease in the country.
Collapse
Affiliation(s)
- Russell Seth Martins
- Center for Clinical Best Practices, Clinical and Translational Research Incubator (CITRIC), Aga Khan University, Karachi, 74800, Pakistan
| | - Hawra Hussain
- Medical College, Aga Khan University, Karachi, 74800, Pakistan
| | - Maryam Chaudry
- Medical College, Aga Khan University, Karachi, 74800, Pakistan
| | - Nashia Ali Rizvi
- Center for Clinical Best Practices, Clinical and Translational Research Incubator (CITRIC), Aga Khan University, Karachi, 74800, Pakistan
| | - Mohsin Ali Mustafa
- Center for Clinical Best Practices, Clinical and Translational Research Incubator (CITRIC), Aga Khan University, Karachi, 74800, Pakistan
| | - Bushra Ayub
- Learning Research Centre, Patel Hospital, Karachi, 75300, Pakistan
| | | | - Alina Abdul Rehman
- Center for Clinical Best Practices, Clinical and Translational Research Incubator (CITRIC), Aga Khan University, Karachi, 74800, Pakistan
| | - Alina Pervez
- Center for Clinical Best Practices, Clinical and Translational Research Incubator (CITRIC), Aga Khan University, Karachi, 74800, Pakistan
| | - Sarah Nadeem
- Center for Clinical Best Practices, Clinical and Translational Research Incubator (CITRIC), Aga Khan University, Karachi, 74800, Pakistan
- Section of Endocrinology, Department of Medicine, Aga Khan University, Karachi, 74800, Pakistan
| | - Rameesha Khalid
- Section of Pulmonology, Department of Medicine, Aga Khan University, Karachi, 74800, Pakistan
| | - Akbar Shoukat Ali
- Section of Pulmonology, Department of Medicine, Aga Khan University, Karachi, 74800, Pakistan
| | - Shayan Shahid
- Section of Pulmonology, Department of Medicine, Aga Khan University, Karachi, 74800, Pakistan
| | - Ali Bin Sarwar Zubairi
- Center for Clinical Best Practices, Clinical and Translational Research Incubator (CITRIC), Aga Khan University, Karachi, 74800, Pakistan
- Section of Pulmonology, Department of Medicine, Aga Khan University, Karachi, 74800, Pakistan
| | - Adil H Haider
- Medical College, Aga Khan University, Karachi, 74800, Pakistan
| | - Muhammad Irfan
- Section of Pulmonology, Department of Medicine, Aga Khan University, Karachi, 74800, Pakistan.
| |
Collapse
|
4
|
Naik RR, Shakya AK, Aladwan SM, El-Tanani M. Kinase Inhibitors as Potential Therapeutic Agents in the Treatment of COVID-19. Front Pharmacol 2022; 13:806568. [PMID: 35444538 PMCID: PMC9014181 DOI: 10.3389/fphar.2022.806568] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
Corona virus is quickly spreading around the world. The goal of viral management is to disrupt the virus's life cycle, minimize lung damage, and alleviate severe symptoms. Numerous strategies have been used, including repurposing existing antivirals or drugs used in previous viral outbreaks. One such strategy is to repurpose FDA-approved kinase inhibitors that are potential chemotherapeutic agents and have demonstrated antiviral activity against a variety of viruses, including MERS, SARS-CoV-1, and others, by inhibiting the viral life cycle and the inflammatory response associated with COVID-19. The purpose of this article is to identify licensed kinase inhibitors that have the ability to reduce the virus's life cycle, from entrance through viral propagation from cell to cell. Several of these inhibitors, including imatinib, ruxolitinib, silmitasertib, and tofacitinib (alone and in conjunction with hydroxychloroquine), are now undergoing clinical studies to determine their efficacy as a possible treatment drug. The FDA approved baricitinib (a Janus kinase inhibitor) in combination with remdesivir for the treatment of COVID-19 patients receiving hospital care in November 2020. While in vitro trials with gilteritinib, fedratinib, and osimertinib are encouraging, further research is necessary before these inhibitors may be used to treat COVID-19 patients.
Collapse
Affiliation(s)
- Rajashri R. Naik
- Department of Biopharmaceutics and Clinical Pharmacy, Al-Ahliyya Amman University, Faculty of Pharmacy, Amman, Jordan
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Ashok K. Shakya
- Faculty of Pharmacy, Pharmacological and Diagnostic Research Centre, Al-Ahliyya Amman University, Amman, Jordan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Safwan M. Aladwan
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Mohamed El-Tanani
- Department of Biopharmaceutics and Clinical Pharmacy, Al-Ahliyya Amman University, Faculty of Pharmacy, Amman, Jordan
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
- Faculty of Pharmacy, Pharmacological and Diagnostic Research Centre, Al-Ahliyya Amman University, Amman, Jordan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| |
Collapse
|
5
|
Yang T, Wang J, Zhao J, Liu Y. Current and prospective applications of exosomal microRNAs in pulmonary fibrosis (Review). Int J Mol Med 2022; 49:37. [PMID: 35088880 PMCID: PMC8815412 DOI: 10.3892/ijmm.2022.5092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/07/2022] [Indexed: 12/12/2022] Open
Abstract
Pulmonary fibrosis (PF) is a chronic, progressive, irreversible and life‑threatening lung disease. However, the pathogenesis and molecular mechanisms of this condition remain unclear. Extracellular vesicles (EVs) are structures derived from the plasma membrane, with a diameter ranging from 30 nm to 5 µm, that play an important role in cell‑to‑cell communications in lung disease, particularly between epithelial cells and the pulmonary microenvironment. In particular, exosomes are a type of EV that can deliver cargo molecules, including endogenous proteins, lipids and nucleic acids, such as microRNAs (miRNAs/miRs). These cargo molecules are encapsulated in lipid bilayers through target cell internalization, receptor‑ligand interactions or lipid membrane fusion. miRNAs are single‑stranded RNA molecules that regulate cell differentiation, proliferation and apoptosis by degrading target mRNAs or inhibiting translation to modulate gene expression. The aim of the present review was to discuss the current knowledge available on exosome biogenesis, composition and isolation methods. The role of miRNAs in the pathogenesis of PF was also reviewed. In addition, emerging diagnostic and therapeutic properties of exosomes and exosomal miRNAs in PF were described, in order to highlight the potential applications of exosomal miRNAs in PF.
Collapse
Affiliation(s)
- Tao Yang
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
- The First Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Jiaying Zhao
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Yang Liu
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| |
Collapse
|