1
|
McGorum B, Pirie RS, Bano L, Davey T, Harris J, Montecucco C. Neurotoxic phospholipase A 2: A proposed cause of equine grass sickness and other animal dysautonomias (multiple system neuropathies). Equine Vet J 2025; 57:11-18. [PMID: 39630613 DOI: 10.1111/evj.14442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2024] [Indexed: 12/07/2024]
Affiliation(s)
- Bruce McGorum
- Royal Dick School of Veterinary Studies, University of Edinburgh, Roslin, UK
| | - R Scott Pirie
- Royal Dick School of Veterinary Studies, University of Edinburgh, Roslin, UK
| | - Luca Bano
- Istituto Zooprofilattico Sperimentale delle Venezie, Treviso, Italy
| | - Tracey Davey
- Electron Microscopy Research Services, Newcastle University, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - John Harris
- Medical Toxicology Centre and Institute of Neuroscience, Newcastle University, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| | - Cesare Montecucco
- National Research Council Institute of Neuroscience and Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
2
|
Sahyoun C, Krezel W, Mattei C, Sabatier JM, Legros C, Fajloun Z, Rima M. Neuro- and Cardiovascular Activities of Montivipera bornmuelleri Snake Venom. BIOLOGY 2022; 11:biology11060888. [PMID: 35741410 PMCID: PMC9219918 DOI: 10.3390/biology11060888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 12/31/2022]
Abstract
Simple Summary Snake venoms are rich in molecules acting on different biological systems, and they are responsible for the complications following snake bite envenoming. These bioactive molecules are of interest in pharmaceutical industries as templates for drug design. Different biological activities of Montivipera bornmuelleri snake venom have been already studied; however, the venom’s activity on the nervous system has not yet been studied, and its effect on the cardiovascular system needs further investigation. Herein, we show that this venom induces toxicity on the nervous system and disrupts the cardiovascular system, highlighting a broad spectrum of biological activities. Abstract The complications following snake bite envenoming are due to the venom’s biological activities, which can act on different systems of the prey. These activities arise from the fact that snake venoms are rich in bioactive molecules, which are also of interest for designing drugs. The venom of Montivipera bornmuelleri, known as the Lebanon viper, has been shown to exert antibacterial, anticancer, and immunomodulatory effects. However, the venom’s activity on the nervous system has not yet been studied, and its effect on the cardiovascular system needs further investigation. Because zebrafish is a convenient model to study tissue alterations induced by toxic agents, we challenged it with the venom of Montivipera bornmuelleri. We show that this venom leads to developmental toxicity but not teratogenicity in zebrafish embryos. The venom also induces neurotoxic effects and disrupts the zebrafish cardiovascular system, leading to heartbeat rate reduction and hemorrhage. Our findings demonstrate the potential neurotoxicity and cardiotoxicity of M. bornmuelleri’s venom, suggesting a multitarget strategy during envenomation.
Collapse
Affiliation(s)
- Christina Sahyoun
- INSERM, CNRS, MITOVASC, Equipe CarMe, SFR ICAT, University of Angers, 49000 Angers, France; (C.S.); (C.M.); (C.L.)
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon
| | - Wojciech Krezel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM, CNRS, Université de Strasbourg, 67400 Illkirch, France;
| | - César Mattei
- INSERM, CNRS, MITOVASC, Equipe CarMe, SFR ICAT, University of Angers, 49000 Angers, France; (C.S.); (C.M.); (C.L.)
| | - Jean-Marc Sabatier
- CNRS, INP, Institute of Neurophysiopathology, Aix-Marseille University, 13385 Marseille, France
- Correspondence: (J.-M.S.); (Z.F.); (M.R.)
| | - Christian Legros
- INSERM, CNRS, MITOVASC, Equipe CarMe, SFR ICAT, University of Angers, 49000 Angers, France; (C.S.); (C.M.); (C.L.)
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon
- Department of Biology, Faculty of Sciences 3, Campus Michel Slayman, Lebanese University, Tripoli 1352, Lebanon
- Correspondence: (J.-M.S.); (Z.F.); (M.R.)
| | - Mohamad Rima
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM, CNRS, Université de Strasbourg, 67400 Illkirch, France;
- Correspondence: (J.-M.S.); (Z.F.); (M.R.)
| |
Collapse
|