1
|
Li P, Li M, Chen WH. Best practices for developing microbiome-based disease diagnostic classifiers through machine learning. Gut Microbes 2025; 17:2489074. [PMID: 40186338 PMCID: PMC11980492 DOI: 10.1080/19490976.2025.2489074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/13/2025] [Accepted: 03/28/2025] [Indexed: 04/07/2025] Open
Abstract
The human gut microbiome, crucial in various diseases, can be utilized to develop diagnostic models through machine learning (ML). The specific tools and parameters used in model construction such as data preprocessing, batch effect removal and modeling algorithms can impact model performance and generalizability. To establish an generally applicable workflow, we divided the ML process into three above-mentioned steps and optimized each sequentially using 83 gut microbiome cohorts across 20 diseases. We tested a total of 156 tool-parameter-algorithm combinations and benchmarked them according to internal- and external- AUCs. At the data preprocessing step, we identified four data preprocessing methods that performed well for regression-type algorithms and one method that excelled for non-regression-type algorithms. At the batch effect removal step, we identified the "ComBat" function from the sva R package as an effective batch effect removal method and compared the performance of various algorithms. Finally, at the ML algorithm selection step, we found that Ridge and Random Forest ranked the best. Our optimized work flow performed similarly comparing with previous exhaustive methods for disease-specific optimizations, thus is generally applicable and can provide a comprehensive guideline for constructing diagnostic models for a range of diseases, potentially serving as a powerful tool for future medical diagnostics.
Collapse
Affiliation(s)
- Peikun Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei-Hua Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- School of Biological Science, Jining Medical University, Rizhao, China
| |
Collapse
|
2
|
Abdul Manan M. Progress in Probiotic Science: Prospects of Functional Probiotic-Based Foods and Beverages. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2025; 2025:5567567. [PMID: 40259922 PMCID: PMC12011469 DOI: 10.1155/ijfo/5567567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 03/27/2025] [Indexed: 04/23/2025]
Abstract
This comprehensive review explores the evolving role of probiotic-based foods and beverages, highlighting their potential as functional and "future foods" that could significantly enhance nutrition, health, and overall well-being. These products are gaining prominence for their benefits in gut health, immune support, and holistic wellness. However, their future success depends on addressing critical safety concerns and navigating administrative complexities. Ensuring that these products "do more good than harm" involves rigorous evaluations of probiotic strains, particularly those sourced from the human gastrointestinal tract. Lactic acid bacteria (LABs) serve as versatile and effective functional starter cultures for the development of probiotic foods and beverages. The review emphasizes the role of LABs as functional starter cultures and the development of precision probiotics in advancing these products. Establishing standardized guidelines and transparent practices is essential, requiring collaboration among regulatory bodies, industry stakeholders, and the scientific community. The review underscores the importance of innovation in developing "friendly bacteria," "super probiotics," precision fermentation, and effective safety assessments. The prospects of functional probiotic-based foods and beverages rely on refining these elements and adapting to emerging scientific advancements. Ultimately, empowering consumers with accurate information, fostering innovation, and maintaining stringent safety standards will shape the future of these products as trusted and beneficial components of a health-conscious society. Probiotic-based foods and beverages, often infused with LABs, a "friendly bacteria," are emerging as "super probiotics" and "future foods" designed to "do more good than harm" for overall health.
Collapse
Affiliation(s)
- Musaalbakri Abdul Manan
- Food Science and Technology Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), MARDI Headquarters, Persiaran MARDI-UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
3
|
Dehghani E, Karimi K, Arekhi S, Ardeshir M, Rezapour R, Shayestehfar M, Memari AH. Effect of nutritional supplements on gut microbiome in individuals with neurodevelopmental disorders: a systematic review and narrative synthesis. BMC Nutr 2025; 11:64. [PMID: 40158118 PMCID: PMC11954342 DOI: 10.1186/s40795-025-01043-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 03/12/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs) encompass a range of disruptive conditions with varying prevalence rates and multiple contributing factors. Recent studies have suggested a potential connection between NDDs and the gut-brain axis. Furthermore, there is evidence indicating that nutritional supplements might have an impact on gastrointestinal (GI) and behavioral symptoms. This study aimed to explore the effects of nutritional supplements on the gut microbiota and behavioral symptoms in individuals with NDDs. METHODS A systematic search of databases such as PubMed, Scopus, Web of Science, Embase, and APA PsycINFO was conducted, utilizing relevant keywords until February 2025. In addition, the search for gray literature was carried out on Google Scholar and ProQuest. The risk of bias was assessed using the ROBINS-I tool for non-randomized studies and the RoB-1 tool for randomized controlled trials. Due to the heterogeneity of the studies, a Synthesis without Meta-analysis (SWiM) approach was employed. RESULTS The overall findings from the studies indicated positive effects of supplementation in reducing the Gastrointestinal Severity Index (GIS) score and alleviating GI symptoms. Supplementation with probiotics and vitamins increased good microbiomes (GM) and decrease in bad microbiomes (BM) among individuals with autism spectrum disorder (ASD). Moreover, the Firmicutes to Bacteroidetes ratio (F/R ratio) exhibited significant changes after supplementation. Additionally, improvements were observed in various assessment scores, including ATEC, ABC, CARS, and PGI-2. CONCLUSIONS Nutritional supplementation in individuals with NDDs can have a positive influence by modulating the microbiome, reducing dysbiosis, and enhancing gut barrier integrity. Shifting in the F/R ratio can be considered as the reason for improving gastrointestinal and behavioral symptoms by influencing neurotransmitter activity and neuroinflammation. Targeting the gut-brain axis with interventions that focus on gut microbiota offers a promising adjunct therapy for the management of NDD. Registration of the review protocol. PROSPERO registration no. CRD42023460449.
Collapse
Affiliation(s)
- Elaheh Dehghani
- Department of Clinical Nutrition, School of Nutrition and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Sports Medicine Research Center (SMRC), Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Nutrition and Metabolic Diseases Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences (AJUMS), Ahvaz, Iran
| | - Keyvan Karimi
- Sports Medicine Research Center (SMRC), Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Soheil Arekhi
- Sports Medicine Research Center (SMRC), Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Maryam Ardeshir
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran (TUMS), Tehran, Iran
| | - Reshad Rezapour
- Sports Medicine Research Center (SMRC), Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Monir Shayestehfar
- Sports Medicine Research Center (SMRC), Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Amir Hossein Memari
- Sports Medicine Research Center (SMRC), Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
4
|
Agrawal S, Rath C, Rao S, Whitehouse A, Patole S. Critical Appraisal of Systematic Reviews Assessing Gut Microbiota and Effect of Probiotic Supplementation in Children with ASD-An Umbrella Review. Microorganisms 2025; 13:545. [PMID: 40142438 PMCID: PMC11946400 DOI: 10.3390/microorganisms13030545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/26/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Given the significance of gut microbiota in autism spectrum disorder (ASD), we aimed to assess the quality of systematic reviews (SRs) of studies assessing gut microbiota and effects of probiotic supplementation in children with ASD. PubMed, EMBASE, PsycINFO, Medline, and Cochrane databases were searched from inception to November 2024. We included SRs of randomised or non-randomized studies reporting on gut microbiota or effects of probiotics in children with ASD. A total of 48 SRs (probiotics: 21, gut microbiota: 27) were included. The median (IQR) number of studies and participants was 7 (5) and 328 (362), respectively, for SRs of probiotic intervention studies and 18 (18) and 1083 (1201), respectively, for SRs of gut microbiota studies in children with ASD. The quality of included SRs was low (probiotics: 12, gut microbiota: 14) to critically low (probiotics: 9, gut microbiota: 13) due to lack of reporting of critical items including prior registration, deviation from protocol, and risk of bias assessment of included studies. Assuring robust methodology and reporting of future studies is important for generating robust evidence in this field.
Collapse
Affiliation(s)
- Sachin Agrawal
- Neonatal Directorate, KEM Hospital for Women, Perth, WA 6008, Australia; (S.A.); (C.R.)
| | - Chandra Rath
- Neonatal Directorate, KEM Hospital for Women, Perth, WA 6008, Australia; (S.A.); (C.R.)
| | - Shripada Rao
- Perth Children’s Hospital, Perth, WA 6009, Australia;
- School of Medicine, University of Western Australia, Perth, WA 6009, Australia
| | - Andrew Whitehouse
- Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia;
| | - Sanjay Patole
- Neonatal Directorate, KEM Hospital for Women, Perth, WA 6008, Australia; (S.A.); (C.R.)
- School of Medicine, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
5
|
Lewandowska-Pietruszka Z, Figlerowicz M, Mazur-Melewska K. Microbiota in Autism Spectrum Disorder: A Systematic Review. Int J Mol Sci 2023; 24:16660. [PMID: 38068995 PMCID: PMC10706819 DOI: 10.3390/ijms242316660] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by several core symptoms: restricted interests, communication difficulties, and impaired social interactions. Many ASD children experience gastrointestinal functional disorders, impacting their well-being. Emerging evidence suggests that a gut microbiota imbalance may exacerbate core and gastrointestinal symptoms. Our review assesses the gut microbiota in children with ASD and interventions targeting microbiota modulation. The analysis of forty-four studies (meta-analyses, reviews, original research) reveals insights into the gut microbiota-ASD relationship. While specific microbiota alterations are mixed, some trends emerge. ASD children exhibit increased Firmicutes (36-81%) and Pseudomonadota (78%) and decreased Bacteroidetes (56%). The Bacteroidetes to Firmicutes ratio tends to be lower (56%) compared to children without ASD, which correlates with behavioral and gastrointestinal abnormalities. Probiotics, particularly Lactobacillus, Bifidobacterium, and Streptococcus strains, show promise in alleviating behavioral and gastrointestinal symptoms (66%). Microbiota transfer therapy (MTT) seems to have lasting benefits for the microbiota and symptoms in one longitudinal study. Prebiotics can potentially help with gastrointestinal and behavioral issues, needing further research for conclusive efficacy due to different interventions being used. This review highlights the gut microbiota-ASD interplay, offering potential therapeutic avenues for the gut-brain axis. However, study heterogeneity, small sample sizes, and methodological variations emphasize the need for comprehensive, standardized research. Future investigations may unveil complex mechanisms linking the gut microbiota to ASD, ultimately enhancing the quality of life for affected individuals.
Collapse
Affiliation(s)
| | | | - Katarzyna Mazur-Melewska
- Department of Infectious Diseases and Child Neurology, Poznan University of Medical Sciences, 60-572 Poznan, Poland; (Z.L.-P.); (M.F.)
| |
Collapse
|
6
|
Romano K, Shah AN, Schumacher A, Zasowski C, Zhang T, Bradley-Ridout G, Merriman K, Parkinson J, Szatmari P, Campisi SC, Korczak DJ. The gut microbiome in children with mood, anxiety, and neurodevelopmental disorders: An umbrella review. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2023; 4:e18. [PMID: 39295902 PMCID: PMC11406386 DOI: 10.1017/gmb.2023.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2024]
Abstract
Research on the gut microbiome and mental health among children and adolescents is growing. This umbrella review provides a high-level overview of current evidence syntheses to amalgamate current research and inform future directions. Searches were conducted across seven databases for peer-reviewed pediatric (<18 years) review literature. Studies reporting gut microbiome composition and/or biotic supplementation on depression, bipolar disorder, anxiety, attention deficit hyperactivity disorder, autism spectrum disorder (ASD), or obsessive-compulsive disorder (OCD) were included. Deduplication and screening took place in Covidence. A sensitivity analysis was conducted to assess the degree of primary study overlap. Among the 39 included review studies, 23 (59%) were observational and 16 (41%) were interventional. Most reviews (92%) focused on ASD. Over half (56%) of the observational and interventional reviews scored low or critically low for methodological quality. A higher abundance of Clostridium clusters and a lower abundance of Bifidobacterium were consistently observed in ASD studies. Biotic supplementation was associated with ASD symptom improvement. Gut microbiome-mental health evidence syntheses in child and youth depression, anxiety, bipolar disorder, and OCD are lacking. Preliminary evidence suggests an association between specific microbiota and ASD symptoms, with some evidence supporting a role for probiotic supplementation ASD therapy.
Collapse
Affiliation(s)
- Kaitlin Romano
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Ashka N Shah
- Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Anett Schumacher
- Department of Psychiatry, Hospital for Sick Children, Toronto, ON, Canada
| | - Clare Zasowski
- Department of Psychiatry, Hospital for Sick Children, Toronto, ON, Canada
| | - Tianyi Zhang
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | | | - Kaitlyn Merriman
- Gerstein Science Information Centre, University of Toronto, Toronto, ON, Canada
| | - John Parkinson
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Peter Szatmari
- Department of Psychiatry, Hospital for Sick Children, Toronto, ON, Canada
- Cundill Centre for Child and Youth Depression, The Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Susan C Campisi
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Hospital for Sick Children, Toronto, ON, Canada
| | - Daphne J Korczak
- Department of Psychiatry, Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|