1
|
Nosaka T, Naito T, Akazawa Y, Takahashi K, Matsuda H, Ohtani M, Nishizawa T, Okamoto H, Nakamoto Y. Identification of novel antiviral host factors by functional gene expression analysis using in vitro HBV infection assay systems. PLoS One 2025; 20:e0314581. [PMID: 40048440 PMCID: PMC11884705 DOI: 10.1371/journal.pone.0314581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/12/2024] [Indexed: 03/09/2025] Open
Abstract
To cure hepatitis B virus (HBV) infection, it is essential to elucidate the function of hepatocyte host factors in regulating the viral life cycle. Signaling and transcription activator of transcription (STAT)1 play important roles in immune responses, but STAT1-independent pathways have also been shown to have important biological reactivity. Using an in vitro HBV infection assay system, the current study aimed to investigate the STAT1-independent host factors that contribute to the control of viral infection by comprehensive functional screening. The in vitro HBV infection system was established using primary human hepatocytes (PXB cells) infected with HBV derived from a plasmid containing the 1.3-mer HBV genome. Comprehensive functional studies were performed using small interfering RNA (siRNA) and vector transfection and analyzed using microarrays. Knockdown of STAT1 increased viral products in HBV-transfected HepG2 cells, but decreased in HBV-infected PXB cells. RNA microarray was performed using HBV-infected PXB cells with STAT1 knockdown. Fumarylacetoacetate hydrolase (FAH) was extracted by siRNA of genes in PXB cells altered by STAT1 knockdown. Transfection of FAH inhibited HBV replication. Dimethyl fumarate (DMF), the methyl ester of FAH metabolite, showed antiviral effects by inducing autophagy and anti-HBV-related genes. Independently of STAT1, FAH was identified as a host factor that contributes to the control of viral infection, and its metabolite, DMF, exhibited antiviral activity. These results suggest that the novel host factor FAH and its metabolites may be an innovative therapeutic strategy to control the HBV life cycle.
Collapse
Affiliation(s)
- Takuto Nosaka
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Tatsushi Naito
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Yu Akazawa
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Kazuto Takahashi
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hidetaka Matsuda
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masahiro Ohtani
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Tsutomu Nishizawa
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Yasunari Nakamoto
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
2
|
Giannopapas V, Smyrni V, Kitsos DK, Stefanou MI, Theodorou A, Tzartos JS, Tsivgoulis G, Giannopoulos S. Cancer in multiple sclerosis patients following prolonged exposure to disease-modifying therapies (DMTs): a systematic review and meta-analysis. J Neurol 2025; 272:162. [PMID: 39849174 PMCID: PMC11757934 DOI: 10.1007/s00415-024-12882-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/25/2025]
Abstract
INTRODUCTION The current literature on the prevalence and potential association between disease-modifying therapies (DMTs) and cancer risk in the MS population has yielded mixed findings. METHODS This study aimed to estimate cancer prevalence and cancer risk in patients with MS (PwMS) under prolonged DMT exposure. Database search include: MEDLINE PUBMED, SCOPUS, and Google Scholar. RESULTS A total of 13 studies involving 333,779 PwMS were included, reporting cancer events over periods ranging from 6 to 32 years. The aggregated pooled prevalence of cancer events in MS patients receiving disease-modifying therapies (DMTs) was 3.8% (95% CI 2.6, 5.2%), with substantial heterogeneity (I2 = 99.7%, p = 0). Two studies compared cancer events in MS patients who received DMTs versus those who did not. The relative risk of cancer associated with DMTs was 0.8 (95% CI 0.59-1.31, I2 = 93.6%, p = 0.53), indicating no significant increase in cancer risk due to DMTs. Breast and basal cell carcinomas had a high prevalence (18.4% and 11.3, respectively) in PwMS under DMTs. CONCLUSION This study reports a 3.8% pooled prevalence of cancer in PwMS receiving DMTs. The findings of this study suggest that DMTs alone do not increase cancer risk in PwMS. Breast cancer and basal cell carcinoma had the highest prevalence among the different types of cancer.
Collapse
Affiliation(s)
- Vasileios Giannopapas
- Second Department of Neurology, Attikon University Hospital, National & Kapodistrian University of Athens, Athens, Greece
- Department of Physical Therapy, University of West Attica, Athens, Greece
| | - Vassiliki Smyrni
- Second Department of Neurology, Attikon University Hospital, National & Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios K Kitsos
- Second Department of Neurology, Attikon University Hospital, National & Kapodistrian University of Athens, Athens, Greece
| | - Maria Ioanna Stefanou
- Second Department of Neurology, Attikon University Hospital, National & Kapodistrian University of Athens, Athens, Greece
| | - Aikaterini Theodorou
- Second Department of Neurology, Attikon University Hospital, National & Kapodistrian University of Athens, Athens, Greece
| | - John S Tzartos
- Second Department of Neurology, Attikon University Hospital, National & Kapodistrian University of Athens, Athens, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, Attikon University Hospital, National & Kapodistrian University of Athens, Athens, Greece
| | - Sotirios Giannopoulos
- Second Department of Neurology, Attikon University Hospital, National & Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
3
|
Sastri KT, Gupta NV, Kannan A, Dutta S, Ali M Osmani R, V B, Ramkishan A, S S. The next frontier in multiple sclerosis therapies: Current advances and evolving targets. Eur J Pharmacol 2024; 985:177080. [PMID: 39491741 DOI: 10.1016/j.ejphar.2024.177080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
Recent advancements in research have significantly enhanced our comprehension of the intricate immune components that contribute to multiple sclerosis (MS) pathogenesis. By conducting an in-depth analysis of complex molecular interactions involved in the immunological cascade of the disease, researchers have successfully identified novel therapeutic targets, leading to the development of innovative therapies. Leveraging pioneering technologies in proteomics, genomics, and the assessment of environmental factors has expedited our understanding of the vulnerability and impact of these factors on the progression of MS. Furthermore, these advances have facilitated the detection of significant biomarkers for evaluating disease activity. By integrating these findings, researchers can design novel molecules to identify new targets, paving the way for improved treatments and enhanced patient care. Our review presents recent discoveries regarding the pathogenesis of MS, highlights their genetic implications, and proposes an insightful approach for engaging with newer therapeutic targets in effectively managing this debilitating condition.
Collapse
Affiliation(s)
- K Trideva Sastri
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India.
| | - N Vishal Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India.
| | - Anbarasu Kannan
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Suman Dutta
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India
| | - Balamuralidhara V
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India
| | - A Ramkishan
- Deputy Drugs Controller (India), Central Drugs Standard Control Organization, Directorate General of Health Services, Ministry of Health & Family Welfare, Government of India, India
| | | |
Collapse
|
4
|
Mahdy AKH, Lokes E, Schöpfel V, Kriukova V, Britanova OV, Steiert TA, Franke A, ElAbd H. Bulk T cell repertoire sequencing (TCR-Seq) is a powerful technology for understanding inflammation-mediated diseases. J Autoimmun 2024; 149:103337. [PMID: 39571301 DOI: 10.1016/j.jaut.2024.103337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/12/2024] [Accepted: 11/09/2024] [Indexed: 12/15/2024]
Abstract
Multiple alterations in the T cell repertoire were identified in many chronic inflammatory diseases such as inflammatory bowel disease, multiple sclerosis, and rheumatoid arthritis, suggesting that T cells might, directly or indirectly, be implicated in these pathologies. This has sparked a deep interest in characterizing disease-associated T cell clonotypes as well as in identifying and quantifying their contribution to the pathophysiology of different autoimmune and inflammation-mediated diseases. Bulk T cell repertoire sequencing (TCR-Seq) has emerged as a powerful method to profile the T cell repertoire of a sample in a high throughput fashion. Given the increasing utilization of TCR-Seq, we aimed here to provide a comprehensive, up-to-date review of the method, its extensions, and its ability to investigate chronic and autoimmune diseases. Specifically, we started by introducing the immunological basis of TCR repertoire generation and features, followed by discussing different experimental approach to perform TCR-Seq, then we describe different methods and frameworks for analyzing the generated datasets. Subsequently, different experimental techniques for investigating the antigenicity of T cell clonotypes are described. Lastly, we discuss recent studies that utilized TCR-Seq to understand different inflammation-mediated diseases, discuss fallbacks of the technology and potential future directions to overcome current limitations.
Collapse
Affiliation(s)
- Aya K H Mahdy
- Institute of Clinical Molecular Biology, Kiel University & University Medical Centre Schleswig-Holstein, Kiel, 24105, Germany
| | - Evgeniya Lokes
- Institute of Clinical Molecular Biology, Kiel University & University Medical Centre Schleswig-Holstein, Kiel, 24105, Germany
| | - Valentina Schöpfel
- Institute of Clinical Molecular Biology, Kiel University & University Medical Centre Schleswig-Holstein, Kiel, 24105, Germany
| | - Valeriia Kriukova
- Institute of Clinical Molecular Biology, Kiel University & University Medical Centre Schleswig-Holstein, Kiel, 24105, Germany
| | - Olga V Britanova
- Institute of Clinical Molecular Biology, Kiel University & University Medical Centre Schleswig-Holstein, Kiel, 24105, Germany
| | - Tim A Steiert
- Institute of Clinical Molecular Biology, Kiel University & University Medical Centre Schleswig-Holstein, Kiel, 24105, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University & University Medical Centre Schleswig-Holstein, Kiel, 24105, Germany.
| | - Hesham ElAbd
- Institute of Clinical Molecular Biology, Kiel University & University Medical Centre Schleswig-Holstein, Kiel, 24105, Germany.
| |
Collapse
|
5
|
Hijal N, Fouani M, Awada B. Unveiling the fate and potential neuroprotective role of neural stem/progenitor cells in multiple sclerosis. Front Neurol 2024; 15:1438404. [PMID: 39634777 PMCID: PMC11614735 DOI: 10.3389/fneur.2024.1438404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Chronic pathological conditions often induce persistent systemic inflammation, contributing to neuroinflammatory diseases like Multiple Sclerosis (MS). MS is known for its autoimmune-mediated damage to myelin, axonal injury, and neuronal loss which drive disability accumulation and disease progression, often manifesting as cognitive impairments. Understanding the involvement of neural stem cells (NSCs) and neural progenitor cells (NPCs) in the remediation of MS through adult neurogenesis (ANG) and gliogenesis-the generation of new neurons and glial cells, respectively is of great importance. Hence, these phenomena, respectively, termed ANG and gliogenesis, involve significant structural and functional changes in neural networks. Thus, the proper integration of these newly generated cells into existing circuits is not only key to understanding the CNS's development but also its remodeling in adulthood and recovery from diseases such as MS. Understanding how MS influences the fate of NSCs/NPCs and their possible neuroprotective role, provides insights into potential therapeutic interventions to alleviate the impact of MS on cognitive function and disease progression. This review explores MS, its pathogenesis, clinical manifestations, and its association with ANG and gliogenesis. It highlights the impact of altered NSCs and NPCs' fate during MS and delves into the potential benefits of its modifications. It also evaluates treatment regimens that influence the fate of NSCS/NPCs to counteract the pathology subsequently.
Collapse
Affiliation(s)
- Nora Hijal
- Department of Nursing, American University of Beirut Medical Center, Beirut, Lebanon
| | - Malak Fouani
- Department of Neurology, Duke University Medical Center, Durham, NC, United States
| | - Bassel Awada
- Department of Experimental Pathology, Immunology, and Microbiology, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
6
|
Bolton C. Review of evidence linking exposure to environmental stressors and associated alterations in the dynamics of immunosenescence (ISC) with the global increase in multiple sclerosis (MS). Immun Ageing 2024; 21:73. [PMID: 39438909 PMCID: PMC11494837 DOI: 10.1186/s12979-024-00473-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Historical survey confirms that, over the latter part of the 20th century, autoimmune-based diseases, including multiple sclerosis (MS), have shown a worldwide increase in incidence and prevalence. Analytical population studies have established that the exponential rise in MS is not solely due to improvements in diagnosis and healthcare but relates to an increase in autoimmune risk factors. Harmful environmental exposures, including non-communicable social determinants of health, anthropogens and indigenous or transmissible microbes, constitute a group of causal determinants that have been closely linked with the global rise in MS cases. Exposure to environmental stressors has profound effects on the adaptive arm of the immune system and, in particular, the associated intrinsic process of immune ageing or immunosenescence (ISC). Stressor-related disturbances to the dynamics of ISC include immune cell-linked untimely or premature (p) alterations and an accelerated replicative (ar) change. A recognised immune-associated feature of MS is pISC and current evidence supports the presence of an arISC during the disease. Moreover, collated data illustrates the immune-associated alterations that characterise pISC and arISC are inducible by environmental stressors strongly implicated in causing duplicate changes in adaptive immune cells during MS. The close relationship between exposure to environmental risk factors and the induction of pISC and arISC during MS offers a valid mechanism through which pro-immunosenescent stressors may act and contribute to the recorded increase in the global rate and number of new cases of the disease. Confirmation of alterations to the dynamics of ISC during MS provides a rational and valuable therapeutic target for the use of senolytic drugs to either prevent accumulation and enhance ablation of less efficient untimely senescent adaptive immune cells or decelerate the dysregulated process of replicative proliferation. A range of senotherapeutics are available including kinase and transcriptase inhibitors, rapalogs, flavanols and genetically-engineered T cells and the use of selective treatments to control emerging and unspecified aspects of pISC and arISC are discussed.
Collapse
|
7
|
Meißner J, Frahm N, Hecker M, Langhorst SE, Mashhadiakbar P, Streckenbach B, Burian K, Baldt J, Heidler F, Richter J, Zettl UK. Personality traits in patients with multiple sclerosis: their association with nicotine dependence and polypharmacy. Ther Adv Neurol Disord 2024; 17:17562864241279118. [PMID: 39411724 PMCID: PMC11475248 DOI: 10.1177/17562864241279118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/29/2024] [Indexed: 10/19/2024] Open
Abstract
Background The modifiable risk factor exerting the most substantial influence on the development and disease course of multiple sclerosis (MS) is cigarette smoking. Furthermore, smoking is associated with a higher risk of suffering from one or more comorbidities and potentially contributes to polypharmacy. We aimed to use personality tests to explore health-promoting and harmful patient characteristics. Objective To investigate two important factors influencing the course of MS - the degree of smoking dependence and the status of polypharmacy - in association with personality traits. Design This is a bicentric, cross-sectional study. Methods We collected sociodemographic, clinical and medical data from patients with MS (n = 375) at two German neurological clinics. The participants were asked to complete the NEO Five-Factor Inventory (NEO-FFI) and the Temperament and Character Inventory-Revised (TCI-R). Relationships between variables were examined using correlation analyses, and differences between groups were examined using linear models. Current smokers with MS were also asked to complete the Fagerström questionnaire to categorize them into patients with mild, moderate and severe smoking dependence. Results In our sample, 67.5% were women, and the mean age was 48.1 years. The patients had a median Expanded Disability Status Scale of 3.0 at a median disease duration of 10 years. Patients with MS with severe smoking dependence had on average a significantly higher neuroticism score in the NEO-FFI compared to those with mild or moderate smoking dependence. Patients with MS and polypharmacy had significantly higher neuroticism scores than those without. In the extraversion scale of the NEO-FFI, patients with MS and polypharmacy had significantly lower scores on average. Significant differences were also found when analysing the TCI-R in patients with MS and heavy smoking dependence, with higher scores for harm avoidance (HA) and lower scores for reward dependence, self-directedness (S-D) and cooperativeness (CO) in various subscales. Polypharmacy in patients with MS was associated with higher scores for HA and self-transcendence. Furthermore, patients with polypharmacy showed lower values than patients without polypharmacy in individual subscales of the dimensions of persistence, S-D and CO. Conclusion Using the NEO-FFI, we were able to show that neuroticism is a detrimental trait and extraversion a protective trait in patients with MS in relation to nicotine dependence and polypharmacy. In addition, the evaluation of the TCI-R showed that high HA as well as low S-D and CO scores were more common in patients with MS and nicotine dependence or polypharmacy. With this knowledge, the risk of polypharmacy and smoking can be understood in the context of personality characteristics and targeted treatment and counselling can be provided.
Collapse
Affiliation(s)
- Janina Meißner
- Section of Neuroimmunology, Department of Neurology, Rostock University Medical Centre, Gehlsheimer Str. 20, Rostock 18147, Germany
- Ecumenic Hainich Hospital gGmbH, Pfafferode 102, Mühlhausen 99974, Germany
| | - Niklas Frahm
- Section of Neuroimmunology, Department of Neurology, Rostock University Medical Centre, Rostock, Germany
| | - Michael Hecker
- Section of Neuroimmunology, Department of Neurology, Rostock University Medical Centre, Rostock, Germany
| | - Silvan Elias Langhorst
- Section of Neuroimmunology, Department of Neurology, Rostock University Medical Centre, Rostock, Germany
| | - Pegah Mashhadiakbar
- Section of Neuroimmunology, Department of Neurology, Rostock University Medical Centre, Rostock, Germany
| | - Barbara Streckenbach
- Section of Neuroimmunology, Department of Neurology, Rostock University Medical Centre, Rostock, Germany
- Ecumenic Hainich Hospital gGmbH, Mühlhausen, Germany
| | - Katja Burian
- Section of Neuroimmunology, Department of Neurology, Rostock University Medical Centre, Rostock, Germany
- Ecumenic Hainich Hospital gGmbH, Mühlhausen, Germany
| | - Julia Baldt
- Section of Neuroimmunology, Department of Neurology, Rostock University Medical Centre, Rostock, Germany
- Ecumenic Hainich Hospital gGmbH, Mühlhausen, Germany
| | | | - Jörg Richter
- Ecumenic Hainich Hospital gGmbH, Mühlhausen, Germany
- Faculty of Health Sciences, University of Hull, Hull, UK
- The Palatine Centre, Durham Law School, Durham University, Durham, UK
| | - Uwe Klaus Zettl
- Section of Neuroimmunology, Department of Neurology, Rostock University Medical Centre, Rostock, Germany
| |
Collapse
|
8
|
Pietrantonio F, Serreqi A, Zerbe H, Svenningsson P, Aigner L. The leukotriene receptor antagonist montelukast as a potential therapeutic adjuvant in multiple sclerosis - a review. Front Pharmacol 2024; 15:1450493. [PMID: 39346564 PMCID: PMC11427386 DOI: 10.3389/fphar.2024.1450493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Multiple Sclerosis (MS) is a multifactorial autoimmune disease of the central nervous system (CNS). It is characterized by a heightened activation of the immune system with ensuing inflammation, demyelination and neurodegeneration with consequences such as motor, sensory, cognitive, as well as autonomic dysfunctions. While a range of immune-modulatory drugs have shown certain efficacy in alleviating pathology and symptoms, none of the currently available therapeutics regenerates the damaged CNS to restore function. There is emerging evidence for leukotrienes and leukotriene receptors being involved in the various aspects of the MS pathology including neuroinflammation and de/remyelination. Moreover, leukotriene receptor antagonists such as the asthma drug montelukast diminish inflammation and promote regeneration/remyelination. Indeed, montelukast has successfully been tested in animal models of MS and a recent retrospective case-control study suggests that montelukast treatment reduces relapses in patients with MS. Therefore, we propose montelukast as a therapeutic adjuvant to the standard immune-modulatory drugs with the potential to reduce pathology and promote structural and functional restoration. Here, we review the current knowledge on MS, its pathology, and on the potential of leukotriene receptor antagonists as therapeutics for MS.
Collapse
Affiliation(s)
| | | | | | - Per Svenningsson
- Department of Clinical Neuroscience, Neuro Svenningsson, Karolinska Universitetssjukhuset, Stockholm, Sweden
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
9
|
Owlia F, Noori F, Zarchi MA, Kazemipoor M. Pulp Sensitivity Testing in Multiple Sclerosis: Disease Duration and Sensory/Motor Associations-A Cross-Sectional Study. Mult Scler Int 2024; 2024:6662518. [PMID: 39295924 PMCID: PMC11410405 DOI: 10.1155/2024/6662518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/03/2024] [Accepted: 08/14/2024] [Indexed: 09/21/2024] Open
Abstract
Introduction: This study explores a relatively unexplored aspect of multiple sclerosis (MS) by examining the sensitivity threshold of dental pulp as a potential indicator of neuropathy in MS patients. Building upon earlier research that focused on assessing the response to electrical pulp testing in MS patients who did not have a history of trigeminal neuralgia, this survey is aimed at delving into the relationship between MS duration and the threshold for stimulation in response to pulp sensitivity tests. Materials and Methods: This study encompassed a total of 124 maxillary central incisors from patients diagnosed with relapsing-remitting multiple sclerosis (RRMS). The participants were uniform in terms of age, falling within the 18-50 years range, and all had RRMS with no history of trigeminal neuralgia. The electric pulp sensitivity test was conducted on all samples, and the results of the electric pulp testing (EPT) were recorded according to the grade of the pulp tester that elicited a response. The threshold was considered reached when the patient first experienced a burning sensation after EPT application and the use of 1,1,1,2-tetrafluoroethane spray. Data analysis employed paired t-tests, Fisher's exact test, and Spearman correlation, with a significance level set at p < 0.05. Results: Based on the study's findings, the average response value to EPT was 2.69 ± 1.17, while the response time to the cold test was 2.61 ± 1.03 s. There was no statistically significant difference in the response to the cold test based on age (p = 0.45). However, it was observed that the mean response time to the cold test was significantly longer among male participants (p = 0.001). No significant differences were identified in the pulpal response to EPT or the cold test between patients with and without sensory-motor involvement (p > 0.05). Furthermore, Spearman's analysis revealed a noteworthy positive correlation between the electrical pulp threshold and the time taken to respond to the cold test (p = 0.025, r = 0.2). Conclusions: The utilization of the pulpal sensitivity test in MS patients holds promise for practical clinical use. Notably, individuals with a more extended duration of the disease exhibited a notably elevated threshold for both the EPT and the cold test conducted on their maxillary central incisors.
Collapse
Affiliation(s)
- Fatemeh Owlia
- Department of Oral and Maxillofacial Medicine School of Dentistry Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Fereshteh Noori
- Department of Oral and Maxillofacial Medicine School of Dentistry Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Marzieh Abutorabi Zarchi
- Department of Neurology School of Medicine Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Maryam Kazemipoor
- Department of Endodontics School of Dentistry Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
10
|
Cruz A, Pereira D, Batista S. [Use of Gadolinium in Follow-Up MRI of Multiple Sclerosis Patients: Current Recommendations]. ACTA MEDICA PORT 2024; 37:53-63. [PMID: 38183232 DOI: 10.20344/amp.20467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/30/2023] [Indexed: 01/07/2024]
Abstract
Multiple sclerosis is the most frequent demyelinating disease of the central nervous system and is characterized by early onset and progressive disability. Magnetic resonance imaging, due to its high sensitivity and specificity in the detection of demyelinating lesions, is the most useful diagnostic test for this disease, with the administration of gadolinium-based contrast agents being an important contribution to imaging interpretation. Although contrast is essential for diagnostic purposes, its routine use in monitoring disease activity, response to treatment, and related complications is controversial. This article aims to collate current recommendations regarding the use of gadolinium in the imaging follow-up of multiple sclerosis and establish effective and safe guidelines for clinical practice. The literature review was conducted in PubMed, using the terms 'multiple sclerosis', 'magnetic resonance imaging' and 'gadolinium', or 'contrast media'. Articles published between January 2013 and January 2023 concerning the safety of gadolinium and the use of these contrast agents in follow-up scans of adult patients diagnosed with multiple sclerosis were selected. Although no biological or clinical consequences have been unequivocally attributed to the retention of gadolinium in the brain, which were mostly reported with linear agents, health authorities have been recommending the restriction of contrast to essential clinical circumstances. In multiple sclerosis, the detection of subclinical contrast-enhancing lesions with no corresponding new/ enlarging T2-WI lesions is rare and has a questionable impact on therapeutic decisions. On the other hand, gadolinium has a higher sensitivity in the differential diagnosis of relapses, in the detection of recent disease activity, before and after treatment initiation, and in patients with a large lesion burden or diffuse/confluent T2-WI lesions. Contrary to progressive multifocal leukoencephalopathy screening, monitoring of immune restitution inflammatory syndrome also benefits from the administration of gadolinium. It is feasible and safe to exclude gadolinium-based contrast agents from routine follow-up scans of multiple sclerosis, despite their additional contribution in specific clinical circumstances that should be acknowledged by the neurologist and neuroradiologist.
Collapse
Affiliation(s)
- Andreia Cruz
- Faculdade de Medicina. Universidade de Coimbra. Coimbra. Portugal
| | - Daniela Pereira
- Área Funcional de Neurorradiologia. Serviço de Imagem Médica. Centro Hospitalar e Universitário de Coimbra. Coimbra. Portugal
| | - Sónia Batista
- Faculdade de Medicina. Universidade de Coimbra. Coimbra; Serviço de Neurologia. Centro Hospitalar e Universitário de Coimbra. Coimbra. Portugal
| |
Collapse
|
11
|
Subhash S, Chaurawal N, Raza K. Promises of Lipid-Based Nanocarriers for Delivery of Dimethyl Fumarate to Multiple Sclerosis Brain. Methods Mol Biol 2024; 2761:457-475. [PMID: 38427255 DOI: 10.1007/978-1-0716-3662-6_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Multiple sclerosis (MS) is a neurodegenerative autoimmune disorder of the central nervous system (CNS) infecting 2.5 million people worldwide. It is the most common nontraumatic neurological impairment in young adults. The blood-brain barrier rupture for multiple sclerosis pathogenesis has two effects: first, during the onset of the immunological attack, and second, for the CNS self-sustained "inside-out" demyelination and neurodegeneration processes. In addition to genetic variations, environmental and lifestyle variables can also significantly increase the risk of developing MS. Dimethyl fumarate (DMF) and sphingosine-1-phosphate (S1P) receptor modulators that may pass the blood-brain barrier and have positive direct effects in the CNS with quite diverse mechanisms of action raise the possibility that a combination therapy could be successful in treating MS. Lipid nanocarriers are recognized as one of the best drug delivery techniques to the brain for effective brain delivery. Numerous scientific studies have shown that lipid nanoparticles can enhance the lipid solubility, oral bioavailability, and brain availability of the drugs. Nanolipidic carriers for DMF delivery could be derived through vitamin D, tocopherol acetate, stearic acid, quercetin, cell-mimicking platelet-based, and chitosan-alginate core-shell-corona-shaped nanoparticles. Clinical and laboratory diagnosis of MS can be performed mainly through magnetic resonance imaging. The advancements in nanotechnology have enabled the clinicians to cross the blood-brain barrier and to target the brain and central nervous system of the patient with multiple sclerosis.
Collapse
Affiliation(s)
- Sreya Subhash
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, India
| | - Nishtha Chaurawal
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, India
| | - Kaisar Raza
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, India.
| |
Collapse
|
12
|
Arora R, Baldi A. Revolutionizing Neurological Disorder Treatment: Integrating Innovations in Pharmaceutical Interventions and Advanced Therapeutic Technologies. Curr Pharm Des 2024; 30:1459-1471. [PMID: 38616755 DOI: 10.2174/0113816128284824240328071911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 04/16/2024]
Abstract
Neurological disorders impose a significant burden on individuals, leading to disabilities and a reduced quality of life. However, recent years have witnessed remarkable advancements in pharmaceutical interventions aimed at treating these disorders. This review article aims to provide an overview of the latest innovations and breakthroughs in neurological disorder treatment, with a specific focus on key therapeutic areas such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, epilepsy, and stroke. This review explores emerging trends in drug development, including the identification of novel therapeutic targets, the development of innovative drug delivery systems, and the application of personalized medicine approaches. Furthermore, it highlights the integration of advanced therapeutic technologies such as gene therapy, optogenetics, and neurostimulation techniques. These technologies hold promise for precise modulation of neural circuits, restoration of neuronal function, and even disease modification. While these advancements offer hopeful prospects for more effective and tailored treatments, challenges such as the need for improved diagnostic tools, identification of new targets for intervention, and optimization of drug delivery methods will remain. By addressing these challenges and continuing to invest in research and collaboration, we can revolutionize the treatment of neurological disorders and significantly enhance the lives of those affected by these conditions.
Collapse
Affiliation(s)
- Rimpi Arora
- Pharma Innovation Lab., Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda 151001, India
| | - Ashish Baldi
- Pharma Innovation Lab., Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda 151001, India
| |
Collapse
|
13
|
Oizumi H, Miyamoto Y, Seiwa C, Yamamoto M, Yoshioka N, Iizuka S, Torii T, Ohbuchi K, Mizoguchi K, Yamauchi J, Asou H. Lethal adulthood myelin breakdown by oligodendrocyte-specific Ddx54 knockout. iScience 2023; 26:107448. [PMID: 37720086 PMCID: PMC10502337 DOI: 10.1016/j.isci.2023.107448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/08/2023] [Accepted: 07/18/2023] [Indexed: 09/19/2023] Open
Abstract
Multiple sclerosis (MS) is a leading disease that causes disability in young adults. We have previously shown that a DEAD-box RNA helicase Ddx54 binds to mRNA and protein isoforms of myelin basic protein (MBP) and that Ddx54 siRNA blocking abrogates oligodendrocyte migration and myelination. Herein, we show that MBP-driven Ddx54 knockout mice (Ddx54 fl/fl;MBP-Cre), after the completion of normal postnatal myelination, gradually develop abnormalities in behavioral profiles and learning ability, inner myelin sheath breakdown, loss of myelinated axons, apoptosis of oligodendrocytes, astrocyte and microglia activation, and they die within 7 months but show minimal peripheral immune cell infiltration. Myelin in Ddx54fl/fl;MBP-Cre is highly vulnerable to the neurotoxicant cuprizone and Ddx54 knockdown greatly impairs myelination in vitro. Ddx54 expression in oligodendrocyte-lineage cells decreased in corpus callosum of MS patients. Our results demonstrate that Ddx54 is indispensable for myelin homeostasis, and they provide a demyelinating disease model based on intrinsic disintegration of adult myelin.
Collapse
Affiliation(s)
- Hiroaki Oizumi
- Tsumura Kampo Laboratories, Tsumura & Co, Ami, Ibaraki 300-1192, Japan
| | - Yuki Miyamoto
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo 157-8535, Japan
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Chika Seiwa
- Glovia Myelin Research Institute, Tsurumi-ku, Yokohama, Kanagawa 230-0046, Japan
| | - Masahiro Yamamoto
- Tsumura Kampo Laboratories, Tsumura & Co, Ami, Ibaraki 300-1192, Japan
| | - Nozomu Yoshioka
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8510, Japan
| | - Seiichi Iizuka
- Tsumura Kampo Laboratories, Tsumura & Co, Ami, Ibaraki 300-1192, Japan
| | - Tomohiro Torii
- Laboratory of Ion Channel Pathophysiology, Graduate School of Brain Science, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Katsuya Ohbuchi
- Tsumura Kampo Laboratories, Tsumura & Co, Ami, Ibaraki 300-1192, Japan
| | | | - Junji Yamauchi
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo 157-8535, Japan
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Hiroaki Asou
- Glovia Myelin Research Institute, Tsurumi-ku, Yokohama, Kanagawa 230-0046, Japan
| |
Collapse
|