1
|
Fatemi N, Mirbahari SN, Tierling S, Sanjabi F, Shahrivari S, AmeliMojarad M, Amelimojarad M, Mirzaei Rezaei M, Nobaveh P, Totonchi M, Nazemalhosseini Mojarad E. Emerging Frontiers in Colorectal Cancer Therapy: From Targeted Molecules to Immunomodulatory Breakthroughs and Cell-Based Approaches. Dig Dis Sci 2025; 70:919-942. [PMID: 39869166 PMCID: PMC11919954 DOI: 10.1007/s10620-024-08774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 11/20/2024] [Indexed: 01/28/2025]
Abstract
Colorectal cancer (CRC) is ranked as the second leading cause of cancer-related deaths globally, necessitating urgent advancements in therapeutic approaches. The emergence of groundbreaking therapies, including chimeric antigen receptor-T (CAR-T) cell therapies, oncolytic viruses, and immune checkpoint inhibitors, marks a transformative era in oncology. These innovative modalities, tailored to individual genetic and molecular profiles, hold the promise of significantly enhancing patient outcomes. This comprehensive review explores the latest clinical trials and advancements, encompassing targeted molecular therapies, immunomodulatory agents, and cell-based therapies. By evaluating the strengths, limitations, and potential synergies of these approaches, this research aims to reshape the treatment landscape and improve clinical outcomes for CRC patients, offering new found hope for those who have exhausted conventional options. The culmination of this work is anticipated to pave the way for transformative clinical trials, ushering in a new era of personalized and effective CRC therapy.
Collapse
Affiliation(s)
- Nayeralsadat Fatemi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Nasim Mirbahari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
- Department of Genetics, Reproductive Biomedicine Research Center, ACECR, Royan Institute for Reproductive Biomedicine, Tehran, Iran
| | - Sascha Tierling
- Department of Genetics/Epigenetics, Faculty NT, Life Sciences, Saarland University, Saarbrücken, Germany
| | - Fatemeh Sanjabi
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical, Tehran, Iran
| | - Shabnam Shahrivari
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical, Tehran, Iran
| | - Mandana AmeliMojarad
- Department of Biology, Faculty of Basic Science, Kharrazi University, Tehran, Iran
| | - Melika Amelimojarad
- Department of Biology, Faculty of Basic Science, Kharrazi University, Tehran, Iran
| | - Meygol Mirzaei Rezaei
- School of Advanced Sciences and Technology, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Parsa Nobaveh
- School of Advanced Sciences and Technology, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Mehdi Totonchi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Genetics, Reproductive Biomedicine Research Center, ACECR, Royan Institute for Reproductive Biomedicine, Tehran, Iran
| | - Ehsan Nazemalhosseini Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Yeman St, Chamran Expressway, P.O. Box 19857-17413, Tehran, Iran.
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
2
|
Aswathy R, Sumathi S. The Evolving Landscape of Cervical Cancer: Breakthroughs in Screening and Therapy Through Integrating Biotechnology and Artificial Intelligence. Mol Biotechnol 2025; 67:925-941. [PMID: 38573545 DOI: 10.1007/s12033-024-01124-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/15/2024] [Indexed: 04/05/2024]
Abstract
Cervical cancer (CC) continues to be a major worldwide health concern, profoundly impacting the lives of countless females worldwide. In low- and middle-income countries (LMICs), where CC prevalence is high, innovative, and cost-effective approaches for prevention, diagnosis, and treatment are vital. These approaches must ensure high response rates with minimal side effects to improve outcomes. The study aims to compile the latest developments in the field of CC, providing insights into the promising future of CC management along with the research gaps and challenges. Integrating biotechnology and artificial intelligence (AI) holds immense potential to revolutionize CC care, from MobileODT screening to precision medicine and innovative therapies. AI enhances healthcare accuracy and improves patient outcomes, especially in CC screening, where its use has increased over the years, showing promising results. Also, combining newly developed strategies with conventional treatment options presents an optimal approach to address the limitations associated with conventional methods. However, further clinical studies are essential for practically implementing these advancements in society. By leveraging these cutting-edge technologies and approaches, there is a substantial opportunity to reduce the global burden of this preventable malignancy, ultimately improving the lives of women in LMICs and beyond.
Collapse
Affiliation(s)
- Raghu Aswathy
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Bharathi Park Rd, Near Forest College Campus, Saibaba Colony, Coimbatore, Tamil Nadu, 641043, India
| | - Sundaravadivelu Sumathi
- Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Bharathi Park Rd, Near Forest College Campus, Saibaba Colony, Coimbatore, Tamil Nadu, 641043, India.
| |
Collapse
|
3
|
Ranawat P, Sharma B, Singh P, Kaur T. Exploring Cancer Immunotherapy and the Promise of Cancer Vaccine. ADVANCES IN MEDICAL DIAGNOSIS, TREATMENT, AND CARE 2024:265-310. [DOI: 10.4018/979-8-3693-3976-3.ch008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The goal of immunotherapy is to enhance the immune system by managing the immunological-mediated microenvironment, which makes it possible for immune cells to locate and destroy tumour cells at vital nodes. In the tumor microenvironment, immune responses against tumour cells are reduced when these cells take up immune-regulatory mechanisms. An environment that suppresses the immune system is facilitated by immune cells, including regulatory T cells, regulatory B cells, dendritic cells, and myeloid-derived suppressor cells. In a number of cancer types, adoptive immune cells and immune checkpoint modulators have shown impressive anticancer benefits. Tumour growth is facilitated in large part by immune cells found in the tumour microenvironment (TME). Tumour growth may be stimulated or inhibited by these cells. The ability of the immune system to elude detection by cancer cells offers new possibilities for innovative cancer treatment strategies.
Collapse
|
4
|
Bai W, Tang X, Xiao T, Qiao Y, Tian X, Zhu B, Chen J, Chen C, Li Y, Lin X, Cai J, Lin Y, Zhu W, Yan G, Liang J, Hu J. Enhancing antitumor efficacy of oncolytic virus M1 via albendazole-sustained CD8 + T cell activation. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200813. [PMID: 38817541 PMCID: PMC11137524 DOI: 10.1016/j.omton.2024.200813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/15/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024]
Abstract
The immune response plays a crucial role in the functionality of oncolytic viruses. In this study, Albendazole, an antihelminthic drug known to modulate the immune checkpoint PD-L1, was combined with the oncolytic virus M1 (OVM1) to treat mice with either prostate cancer (RM-1) or glioma (GL261) tumors. This combination therapy enhanced anti-tumor effects in immunocompetent mice, but not in immunodeficient ones, without increasing OVM1 replication. Instead, it led to an increase in the number of CD8+ T cells within the tumor, downregulated the expression of PD1 on CD8+ T cells, and upregulated activation markers such as Ki67, CD44, and CD69 and the secretion of cytotoxic factors including interferon (IFN)-γ, granzyme B, and tumor necrosis factor (TNF)-α. Consistently, it enhanced the in vitro tumor-killing activity of lymphocytes from tumor-draining lymph nodes or spleens. The synergistic effect of Albendazole on OVM1 was abolished by depleting CD8+ T cells, suggesting a CD8+ T cell-dependent mechanism. In addition, Albendazole and OVM1 therapy increased CTLA4 expression in the spleen, and the addition of CTLA4 antibodies further enhanced the anti-tumor efficacy in vivo. In summary, Albendazole can act synergistically with oncolytic viruses via CD8+ T cell activation, and the Albendazole/OVM1 combination can overcome resistance to CTLA4-based immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Wenjing Bai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xia Tang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Tong Xiao
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yangyang Qiao
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xuyan Tian
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Bo Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiehong Chen
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Chaoxin Chen
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuanyuan Li
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xueying Lin
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jing Cai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuan Lin
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenbo Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Guangzhou Virotech Pharmaceutical Co., Ltd, #3 Lanyue Road, Science Park, Guangzhou 510663, China
| | - Jiankai Liang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jun Hu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
5
|
Mokhtarpour K, Akbarzadehmoallemkolaei M, Rezaei N. A viral attack on brain tumors: the potential of oncolytic virus therapy. J Neurovirol 2024; 30:229-250. [PMID: 38806994 DOI: 10.1007/s13365-024-01209-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/30/2024]
Abstract
Managing malignant brain tumors remains a significant therapeutic hurdle that necessitates further research to comprehend their treatment potential fully. Oncolytic viruses (OVs) offer many opportunities for predicting and combating tumors through several mechanisms, with both preclinical and clinical studies demonstrating potential. OV therapy has emerged as a potent and effective method with a dual mechanism. Developing innovative and effective strategies for virus transduction, coupled with immune checkpoint inhibitors or chemotherapy drugs, strengthens this new technique. Furthermore, the discovery and creation of new OVs that can seamlessly integrate gene therapy strategies, such as cytotoxic, anti-angiogenic, and immunostimulatory, are promising advancements. This review presents an overview of the latest advancements in OVs transduction for brain cancer, focusing on the safety and effectiveness of G207, G47Δ, M032, rQNestin34.5v.2, C134, DNX-2401, Ad-TD-nsIL12, NSC-CRAd-S-p7, TG6002, and PVSRIPO. These are evaluated in both preclinical and clinical models of various brain tumors.
Collapse
Affiliation(s)
- Kasra Mokhtarpour
- Animal Model Integrated Network (AMIN), Universal Scientific Education and Research Network (USERN), Tehran, 1419733151, Iran
| | - Milad Akbarzadehmoallemkolaei
- Animal Model Integrated Network (AMIN), Universal Scientific Education and Research Network (USERN), Tehran, 1419733151, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Gharib St, Keshavarz Blvd, Tehran, 1419733151, Iran
| | - Nima Rezaei
- Animal Model Integrated Network (AMIN), Universal Scientific Education and Research Network (USERN), Tehran, 1419733151, Iran.
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Gharib St, Keshavarz Blvd, Tehran, 1419733151, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, 1417653761, Iran.
| |
Collapse
|
6
|
Balakrishnan P, Sathish S, Saravanan S. HIV-Encoded Gene Therapy as Anti-cancer Therapeutics: A Narrative Review. Cureus 2024; 16:e53431. [PMID: 38435173 PMCID: PMC10909071 DOI: 10.7759/cureus.53431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/01/2024] [Indexed: 03/05/2024] Open
Abstract
Recently, there has been interest in using viruses as cancer treatments. Oncolytic virology was founded by scientists who noticed that viruses might preferentially lyse cancer cells over healthy ones. Oncolytic virotherapy has similar obstacles as other treatment approaches, gaining entry into the specific tumour cell, encountering antiviral immune responses, off-target infection and many other unfavourable circumstances in the tumour microenvironment, and a lack of unique therapeutic and predictive biomarkers. However, oncolytic viruses have emerged as the main players in the biological treatment for cancer with the use of vectors such as human adenoviruses in oncolytic virotherapy. Recent large-scale research has shown that other viruses, such as the measles virus and the herpes simplex virus (HSV), may potentially be viable options for cancer treatment. The FDA has cleared T-VEC, an HSV-based oncolytic virus, for use in biological cancer treatment after its successful completion of human clinical trials. Furthermore, the measles virus vaccine strain has shown remarkable outcomes in pre-clinical and clinical testing. The use of such modified viruses in biological cancer treatment holds promise for groundbreaking discoveries in the field of cancer research because of their therapeutic effectiveness, fewer side effects, and safety. Several other newer approaches have been used in recent years. HIV-encoded proteins are also hypothesized to promote mitochondrial homeostasis causing bystander-induced apoptosis. We provide an overview of the most recent developments in the clinical use of oncolytic virus-based biological cancer treatment in this study. This evaluation also assesses the advantages and disadvantages of the viral candidates and provides insight into their potential in the future.
Collapse
Affiliation(s)
- Pachamuthu Balakrishnan
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Sankar Sathish
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Shanmugam Saravanan
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|