1
|
Bakes E, Cheng R, Mañucat-Tan N, Ramaswamy V, Hansford JR. Advances in molecular prognostication and treatments in ependymoma. J Neurooncol 2025; 172:317-326. [PMID: 39757304 DOI: 10.1007/s11060-024-04923-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
Ependymoma is the third most common brain tumour of childhood and historically has posed a major challenge to both pediatric and adult neuro-oncologists. Ependymoma can occur anywhere in the central nervous system throughout the entire age spectrum. Treatment options have been limited to surgery and radiation, and outcomes have been widely disparate across studies. Indeed, these disparate outcomes have rendered it extraordinarily difficult to compare studies and to truly understand which patients are low and high-risk. Over the past two decades there have been tremendous advances in our understanding of the biology of ependymoma, which have changed risk stratification dramatically. Indeed, it is now well accepted that ependymoma comprises multiple distinct entities, whereby each compartment (supratentorial, posterior fossa, spinal) are distinct, and within each compartment there exist unique groups. The driver events, demographics and response to treatment vary widely across these groups and allow for a better classification of thee disease. Herein, we review the advances in the molecular stratification of ependymoma including how an improved classification and risk stratification allows for more precise therapies.
Collapse
Affiliation(s)
- Emma Bakes
- Michael Rice Centre for Hematology and Oncology, Women's and Children's Hospital, Adelaide, SA, Australia
| | - Rachel Cheng
- Michael Rice Centre for Hematology and Oncology, Women's and Children's Hospital, Adelaide, SA, Australia
| | - Noralyn Mañucat-Tan
- South Australia Health and Medical Research Institute, Adelaide, SA, Australia
| | - Vijay Ramaswamy
- Developmental and Stem Cell Biology, Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.
- Division of Hematology/Oncology, Hospital for Sick Children, Toronto, ON, Canada.
- Departments of Medical Biophysics and Pediatrics, University of Toronto, Toronto, ON, Canada.
| | - Jordan R Hansford
- Michael Rice Centre for Hematology and Oncology, Women's and Children's Hospital, Adelaide, SA, Australia.
- South Australia Health and Medical Research Institute, Adelaide, SA, Australia.
- South Australia ImmunoGENomics Cancer Institute, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
2
|
Lu VM, Jallo GI, Shimony N. Intramedullary pediatric low-grade glioma of the spine. Childs Nerv Syst 2024; 40:3107-3117. [PMID: 38904769 DOI: 10.1007/s00381-024-06499-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Abstract
PURPOSE Pediatric intramedullary spinal cord low-grade gliomas (pLGGs) are rare diagnoses among central nervous system (CNS) tumors in the pediatric population. The classic presentation of the patients includes some degree of neurologic deficit, although many times the symptoms are vague which leads to delayed diagnosis. MATERIAL AND METHODS The first step in the diagnosis includes special parameters in spinal imaging, particularly magnetic resonance imaging (MRI), and surgical resection remains the cornerstone for both diagnosis and treatment. Yet, recent years advancement in molecular and genetic understanding of CNS tumors allows for better adjustment of the treatment and follow-up regimens. Based on postoperative status, adjuvant therapy may provide additional therapeutic advantage for some types of tumors. CONCLUSION Ultimately, patients have a very promising prognosis when treated appropriately in most of the cases of pediatric spinal cord LGG with continued advances arising. This manuscript summarizes the most contemporary evidence regarding clinical and treatment features of intramedullary pLGGs.
Collapse
Affiliation(s)
- Victor M Lu
- Department of Neurological Surgery, University of Miami, Jackson Memorial Hospital, Miami, FL, USA
| | - George I Jallo
- Institute for Brain Protection Sciences, Johns Hopkins All Children's Hospital, St Petersburg, FL, USA.
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA.
| | - Nir Shimony
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
- Le Bonheur Neuroscience Institute, Le Bonheur Children's Hospital, Memphis, TN, USA
- Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, TN, USA
- Semmes-Murphey Clinic, Memphis, TN, USA
| |
Collapse
|
3
|
Fu T, Mao C, Chen Z, Huang Y, Li H, Wang C, Liu J, Li S, Lin F. Disease characteristics and clinical specific survival prediction of spinal ependymoma: a genetic and population-based study. Front Neurol 2024; 15:1454061. [PMID: 39346772 PMCID: PMC11428185 DOI: 10.3389/fneur.2024.1454061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/26/2024] [Indexed: 10/01/2024] Open
Abstract
Background Spinal Ependymoma (SP-EP) is the most commonly occurring tumor affecting the spinal cord. Prompt diagnosis and treatment can significantly enhance prognostic outcomes for patients. In this study, we conducted a comprehensive analysis of RNA sequencing data, along with associated clinical information, from patients diagnosed with SP-EP. The aim was to identify key genes that are characteristic of the disease and develop a survival-related nomogram. Methods We first accessed the Gene Expression Integrated Database (GEO) to acquire the microarray dataset pertaining to SP-EP. This dataset was then processed to identify differentially expressed genes (DEGs) between SP-EP samples and normal controls. Furthermore, machine learning techniques and the CIBERSORT algorithm were employed to extract immune characteristic genes specific to SP-EP patients, thereby enhancing the characterization of target genes. Next, we retrieved comprehensive information on patients diagnosed with SP-EP between 2000 and 2020 from the Surveillance, Epidemiology, and End Results Database (SEER). Using this data, we screened for predictive factors that have a significant impact on patient outcomes. A nomogram was constructed to visualize the predicted overall survival (OS) rates of these patients at 3, 5, and 8 years post-diagnosis. Finally, to assess the reliability and clinical utility of our predictive model, we evaluated it using various metrics including the consistency index (C-index), time-dependent receiver operating characteristic (ROC) curves, area under the curve (AUC), calibration curves, and decision curve analysis (DCA). Results A total of 5,151 DEGs were identified between the SP-EP sample and the normal sample. Analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways revealed that these DEGs were primarily involved in cellular processes, including cell cycle regulation and cell sensitivity mechanisms. Furthermore, immune infiltration analysis was utilized to identify the core gene CELF4. Regarding the survival rates of patients with SP-EP, the 3-year, 5-year, and 8-year survival rates were 72.5, 57.0, and 40.8%, respectively. Diagnostic age (p < 0.001), gender (p < 0.001), and surgical approach (p < 0.005) were identified as independent prognostic factors for OS. Additionally, a nomogram model was constructed based on these prognostic factors, demonstrating good consistency between predicted and actual results in the study's validation process. Notably, the study also demonstrated that more extensive surgical resection could extend patients' OS. Conclusion Through bioinformatics analysis of microarray datasets, we identified CELF4 as a central gene associated with immune infiltration among DEGs. Previous studies have demonstrated that CELF4 may play a pivotal role in the pathogenesis of SP-EP. Furthermore, this study developed and validated a prognostic prediction model in the form of a nomogram utilizing the SEER database, enabling clinicians to accurately assess treatment risks and benefits, thereby enhancing personalized therapeutic strategies and prognosis predictions.
Collapse
Affiliation(s)
- Tengyue Fu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
- The Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Chuxiao Mao
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
| | - Zhuming Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
| | - Yuxiang Huang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
| | - Houlin Li
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
| | - Chunhua Wang
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, China
| | - Jie Liu
- The Department of Neurosurgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Shenyu Li
- The Department of Neurosurgery, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Famu Lin
- The Department of Neurosurgery, Shunde Hospital of Southern Medical University, Foshan, China
| |
Collapse
|
4
|
Kumawat C, Takahashi T, Date I, Tomita Y, Tanaka M, Arataki S, Komatsubara T, Flores AOP, Yu D, Jain M. State-of-the-Art and New Treatment Approaches for Spinal Cord Tumors. Cancers (Basel) 2024; 16:2360. [PMID: 39001422 PMCID: PMC11240441 DOI: 10.3390/cancers16132360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Spinal cord tumors, though rare, present formidable challenges in clinical management due to their intricate nature. Traditional treatment modalities like surgery, radiation therapy, and chemotherapy have been the mainstay for managing these tumors. However, despite significant advancements, challenges persist, including the limitations of surgical resection and the potential side effects associated with radiation therapy. In response to these limitations, a wave of innovative approaches is reshaping the treatment landscape for spinal cord tumors. Advancements in gene therapy, immunotherapy, and targeted therapy are offering groundbreaking possibilities. Gene therapy holds the potential to modify the genes responsible for tumor growth, while immunotherapy harnesses the body's own immune system to fight cancer cells. Targeted therapy aims to strike a specific vulnerability within the tumor cells, offering a more precise and potentially less toxic approach. Additionally, novel surgical adjuncts are being explored to improve visualization and minimize damage to surrounding healthy tissue during tumor removal. These developments pave the way for a future of personalized medicine for spinal cord tumors. By delving deeper into the molecular makeup of individual tumors, doctors can tailor treatment strategies to target specific mutations and vulnerabilities. This personalized approach offers the potential for more effective interventions with fewer side effects, ultimately leading to improved patient outcomes and a better quality of life. This evolving landscape of spinal cord tumor management signifies the crucial integration of established and innovative strategies to create a brighter future for patients battling this complex condition.
Collapse
Affiliation(s)
- Chetan Kumawat
- Department of Orthopedic Surgery, Okayama Rosai Hospital, 1-10-25 Chikkomidorimachi, Minami Ward Okayama, Okayama 702-8055, Japan
- Department of Orthopedic Surgery, Sir Ganga Ram Hospital, Rajinder Nagar, New Delhi 110060, India
| | - Toshiyuki Takahashi
- Spinal Disorder Center, Fujieda Heisei Memorial Hospital, 123-1 Mizuue Fujieda, Shizuoka 426-8662, Japan
| | - Isao Date
- Department of Neurosurgery, Okayama Rosai Hospital, 1-10-25 Chikkomidorimachi, Minami Ward Okayama, Okayama 702-8055, Japan
| | - Yousuke Tomita
- Department of Neurosurgery, Okayama Rosai Hospital, 1-10-25 Chikkomidorimachi, Minami Ward Okayama, Okayama 702-8055, Japan
| | - Masato Tanaka
- Department of Orthopedic Surgery, Okayama Rosai Hospital, 1-10-25 Chikkomidorimachi, Minami Ward Okayama, Okayama 702-8055, Japan
| | - Shinya Arataki
- Department of Orthopedic Surgery, Okayama Rosai Hospital, 1-10-25 Chikkomidorimachi, Minami Ward Okayama, Okayama 702-8055, Japan
| | - Tadashi Komatsubara
- Department of Orthopedic Surgery, Okayama Rosai Hospital, 1-10-25 Chikkomidorimachi, Minami Ward Okayama, Okayama 702-8055, Japan
| | - Angel O P Flores
- Department of Orthopedic Surgery, Okayama Rosai Hospital, 1-10-25 Chikkomidorimachi, Minami Ward Okayama, Okayama 702-8055, Japan
| | - Dongwoo Yu
- Department of Orthopedic Surgery, Okayama Rosai Hospital, 1-10-25 Chikkomidorimachi, Minami Ward Okayama, Okayama 702-8055, Japan
| | - Mukul Jain
- Department of Orthopedic Surgery, Okayama Rosai Hospital, 1-10-25 Chikkomidorimachi, Minami Ward Okayama, Okayama 702-8055, Japan
| |
Collapse
|
5
|
Topel G, Dirilenoğlu F, Sevin İE, Kahraman A. Ependymomas of the spinal region in adults: Clinical and pathological features and MYCN expression levels in spinal ependymomas and myxopapillary ependymomas. Ann Diagn Pathol 2024; 70:152299. [PMID: 38555652 DOI: 10.1016/j.anndiagpath.2024.152299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Ependymomas (EPNs) of the spinal region are a heterogeneous group of tumors that account for 17.6 % in adults. Four types have been recognized: subependymoma, spinal ependymoma (Sp-EPN), myxopapillary ependymoma (MPE), and Sp-EPN-MYCN amplified, each with distinct histopathological and molecular features. METHODS This study investigated the clinical and pathological characteristics and MYCN expression levels of 35 Sp-EPN and MPE cases diagnosed at a tertiary university hospital over a decade-long period. RESULTS Twenty-five cases were Sp-EPN and 10 cases were MPE, and were graded as WHO grade 2, except for 1 Sp-EPN case with grade 3 features. The most common symptoms were lower back pain and difficulty in walking. Radiology showed different tumor sizes and locations along the spinal cord, with MPEs exclusively in the lumbosacral region. Surgery was the main treatment, and gross total resection was achieved in all cases except for one. Immunohistochemistry showed low Ki-67 proliferation indices in all cases, and no MYCN expression. During follow-up, 3 (8.6 %) cases recurred and/or metastasized and 5 cases (14.3 %) died. No significant difference was found in disease-free survival or overall survival between Sp-EPN and MPE cases. However, 3 cases with grade 2 histology demonstrated recurrence and/or metastasis, despite the lack of MYCN expression. CONCLUSION Our results underscore the multifactorial nature of tumor aggressiveness in EPNs of the spinal region. This study enhances our knowledge of the clinical and pathological features of Sp-EPNs and MPEs and highlights the need for better diagnostic and prognostic markers in these rare tumors.
Collapse
Affiliation(s)
- Gözde Topel
- Department of Pathology, Ataturk Training and Research Hospital, Izmir Katip Celebi University, Izmir, Türkiye
| | - Fikret Dirilenoğlu
- Department of Pathology, Faculty of Medicine, Near East University, Nicosia, Cyprus.
| | - İsmail Ertan Sevin
- Department of Neurosurgery, Ataturk Training and Research Hospital, Izmir Katip Celebi University, Izmir, Türkiye
| | - Aslı Kahraman
- Department of Pathology, Ataturk Training and Research Hospital, Izmir Katip Celebi University, Izmir, Türkiye
| |
Collapse
|