1
|
Zhang G, Liu J, Li S, Wang T, Chen L, Li H, Ding Q, Li X, Zhu S, Tang X. Cytochalasin H enhances sensitivity to gefitinib in non-small-cell lung cancer cells through inhibiting EGFR activation and PD-L1 expression. Sci Rep 2024; 14:25276. [PMID: 39455693 PMCID: PMC11512071 DOI: 10.1038/s41598-024-76060-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
In our previous study, we have isolated cytochalasin H (CyH) from endophytic fungus derived from mangrove plant and found that CyH inhibited the proliferation of non-small cell lung cancer (NSCLC) cells. Recently, epidermal growth factor receptor (EGFR) activation and programmed cell death 1 ligand (PD-L1) expression have been demonstrated to mediate NSCLC resistance to gefitinib, first-generation EGFR tyrosine kinase inhibitor (EGFR-TKI). Here, we further investigated the effect of CyH on EGFR activation, PD-L1 expression, and gefitinib sensitivity in NSCLC cell lines, A549 (wild-type EGFR), HCC827 (EGFR mutation), and NCI-H1975 (dual EGFR mutations and acquired gefitinib resistance) and animal model. Our results showed that CyH significantly inhibited EGFR activation and PD-L1 expression in NSCLC cells. Additionally, CyH dramatically promoted the inhibitory effect of gefitinib on the proliferation of A549 and HCC827 cells, and enhanced the sensitivity to gefitinib in NCI-H1975 cells. Moreover, CyH increased the inhibitory effect of gefitinib on EGFR activation and PD-L1 expression in HCC827 and NCI-H1975 cells. Animal experiments further demonstrated that CyH significantly promoted the inhibitory effect of gefitinib on the growth of NSCLC and the expression of Ki-67, p-EGFR, and PD-L1 in NCI-H1975 NSCLC xenograft tumors of nude mice. Furthermore, CyH inhibited the activation of JAK3/STAT signaling pathway. Taken together, our findings suggest that CyH promotes the sensitivity to gefitinib in NSCLC cells through the inhibition of EGFR activation and PD-L1 expression.
Collapse
Affiliation(s)
- Guihong Zhang
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, 524023, People's Republic of China
| | - Jiao Liu
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, 524023, People's Republic of China
| | - Sanzhong Li
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, 524023, People's Republic of China
| | - Tianyu Wang
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, 524023, People's Republic of China
| | - Li Chen
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, 524023, People's Republic of China
| | - Huan Li
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, 524023, People's Republic of China
| | - Qingkai Ding
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, 524023, People's Republic of China
| | - Xiangyong Li
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, 524023, People's Republic of China
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan, 523808, People's Republic of China
| | - Shaoping Zhu
- Center for Animal, Guangdong Medical University, Zhanjiang, 524023, People's Republic of China
| | - Xudong Tang
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, 524023, People's Republic of China.
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan, 523808, People's Republic of China.
| |
Collapse
|
2
|
Wang L, Wu Z, Xu C, Ye H. Ferroptosis-related genes prognostic signature for pancreatic cancer and immune infiltration: potential biomarkers for predicting overall survival. J Cancer Res Clin Oncol 2023; 149:18119-18134. [PMID: 38007403 DOI: 10.1007/s00432-023-05478-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/13/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND Pancreatic adenocarcinoma (PAAD) constitutes a lethal malignancy, notorious for its elevated mortality rates due to the difficulties in early diagnosis and rapid metastasis. The emerging paradigm of ferroptosis-an iron-catalyzed, regulated cell death distinguished by the accrual of lipid peroxides-has recently garnered scholarly focus. However, the expression landscape of ferroptosis-related genes (FRGs) in PAAD and their prognostic implications remain enigmatic. METHODS We undertook a rigorous quantification of FRGs in PAAD samples, sourcing data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. These repositories also provided extensive metadata, encompassing mesenchymal stemness index (mRNAsi), genomic mutations, copy number variations (CNV), tumor mutational burden (TMB), and other clinical attributes. A predictive model was constructed utilizing Lasso regression analysis, and a co-expression study was executed to elucidate the complex interconnections between FRGs and other gene sets. RESULTS Intriguingly, FRGs were substantially upregulated in the high-risk cohort, even in the absence of clinically manifest symptoms, emphasizing their utility as prognostic biomarkers. Gene set enrichment analysis (GSEA) revealed significant enrichment of immune and tumor-related pathways in this high-risk demographic. Striking heterogeneities in immune function and N6-methyladenosine (m6A) RNA modification were observed between the low- and high-risk groups. Our analysis further implicated a cohort of genes-including LINC01559, C11orf86, SERPINB5, DSG3, MSLN, EREG, FAM83A, CXCL5, LY6D, and PSCA-as cardinal mediators in PAAD pathogenesis. A convergence of our predictive model with an analysis of CNVs, single nucleotide polymorphisms (SNPs), and drug sensitivities, revealed an intricate relationship with the FRGs. CONCLUSIONS Our findings accentuate the salient role of FRGs as critical modulators in the pathogenesis and progression of PAAD. Importantly, our composite prognostic framework offers invaluable insights into PAAD clinical trajectory. Moreover, the complex crosstalk between FRGs and immune cell landscapes in the tumor microenvironment (TME) may elucidate prospective therapeutic strategies. The clinical translational utility of these insights, however, requires further in-depth empirical exploration. Accordingly, the FRG signature introduces a compelling new avenue for risk stratification and targeted therapeutic interventions in this devastating malignancy.
Collapse
Affiliation(s)
- Lei Wang
- Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, 250011, China
| | - Zixuan Wu
- Hunan University of Traditional Chinese Medicine, Changsha, 410208, Hunan, China
| | - Chen Xu
- Qilu Hospital (Qingdao), C Heeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, 266035, Shandong, China.
- Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Hang Ye
- Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
- Hunan University of Traditional Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
3
|
Zhang Y, Cheng S, Zou H, Han Z, Xie T, Zhang B, Dai D, Yin X, Liang Y, Kou Y, Tan Y, Shen L, Peng Z. Correlation of the gut microbiome and immune-related adverse events in gastrointestinal cancer patients treated with immune checkpoint inhibitors. Front Cell Infect Microbiol 2023; 13:1099063. [PMID: 37051296 PMCID: PMC10084768 DOI: 10.3389/fcimb.2023.1099063] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
IntroductionThe wide application of immune checkpoint inhibitors has significantly improved the survival expectation of cancer patients. While immunotherapy brings benefits to patients, it also results in a series of immune-related adverse events (irAEs). Increasing evidence suggests that the gut microbiome is critical for immunotherapy response and the development of irAEs.MethodsIn this prospective study, we recruited 95 patients with advanced/unresectable gastrointestinal cancers treated with immunotherapy and report a comprehensive analysis of the association of the gut microbiome with irAEs. Metagenome sequencing was used to analyze the differences in bacterial composition and metabolic pathways of baseline fecal samples.ResultsIn summary, we identified bacterial species and metabolic pathways that might be associated with the occurrence of irAEs in gastric, esophageal, and colon cancers. Ruminococcus callidus and Bacteroides xylanisolvens were enriched in patients without severe irAEs. Several microbial metabolic pathways involved in the urea cycle, including citrulline and arginine biosynthesis, were associated with irAEs. We also found that irAEs in different cancer types and toxicity in specific organs and the endocrine system were associated with different gut microbiota profiles. These findings provide the basis for future mechanistic exploration.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Siyuan Cheng
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing, China
| | | | - Zihan Han
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
- Department of Colorectal Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Tong Xie
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Bohan Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | | | | | | | | | | | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
- *Correspondence: Lin Shen, ; Zhi Peng,
| | - Zhi Peng
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
- *Correspondence: Lin Shen, ; Zhi Peng,
| |
Collapse
|
4
|
Riano I, Abuali I, Sharma A, Durant J, Dragnev KH. Role of Neoadjuvant Immune Checkpoint Inhibitors in Resectable Non-Small Cell Lung Cancer. Pharmaceuticals (Basel) 2023; 16:233. [PMID: 37259381 PMCID: PMC9963056 DOI: 10.3390/ph16020233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 08/23/2024] Open
Abstract
The neoadjuvant use of immune checkpoint inhibitors (ICI) in resectable non-small cell lung cancer (NSCLC) is being increasingly adopted, but questions about the most appropriate applications remain. Although patients with resectable NSCLC are often treated with surgery and adjuvant chemotherapy or targeted therapies +/- radiotherapy, they still have a high risk of recurrence and death. In recent years, immune checkpoint inhibitors (ICI) (anti-PD-1/PD-L1 and anti-CTLA-4) have provided a new and effective therapeutic strategy for the treatment of advanced NSCLC. Therefore, it is possible that ICIs for early-stage NSCLC may follow the pattern established in metastatic disease. Currently, there are several ongoing trials to determine the efficacy in the neoadjuvant setting for patients with local or regional disease. To date, only nivolumab in combination with chemotherapy has been approved by the U.S. FDA in the preoperative setting, but data continue to evolve rapidly, and treatment guidelines need to be determined. In this article, we review the current preclinical and clinical evidence on neoadjuvant ICIs alone and combination in the treatment of early-stage NSCLC.
Collapse
Affiliation(s)
- Ivy Riano
- Section of Medical Oncology, Dartmouth Cancer Center, Dartmouth Health, 1 Medical Center Drive, Lebanon, NH 03756, USA
- Geisel School of Medicine, Dartmouth College, 1 Rope Ferry Road, Hanover, NH 03755, USA
| | - Inas Abuali
- Division of Hematology and Oncology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Aditya Sharma
- Geisel School of Medicine, Dartmouth College, 1 Rope Ferry Road, Hanover, NH 03755, USA
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Dartmouth Health, 1 Medical Drive, Lebanon, NH 03756, USA
| | - Jewelia Durant
- Geisel School of Medicine, Dartmouth College, 1 Rope Ferry Road, Hanover, NH 03755, USA
| | - Konstantin H. Dragnev
- Section of Medical Oncology, Dartmouth Cancer Center, Dartmouth Health, 1 Medical Center Drive, Lebanon, NH 03756, USA
- Geisel School of Medicine, Dartmouth College, 1 Rope Ferry Road, Hanover, NH 03755, USA
| |
Collapse
|
5
|
Yang H, Miao Y, Yu Z, Wei M, Jiao X. Cell adhesion molecules and immunotherapy in advanced non-small cell lung cancer: Current process and potential application. Front Oncol 2023; 13:1107631. [PMID: 36895477 PMCID: PMC9989313 DOI: 10.3389/fonc.2023.1107631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/07/2023] [Indexed: 02/23/2023] Open
Abstract
Advanced non-small cell lung cancer (NSCLC) is a severe disease and still has high mortality rate after conventional treatment (e.g., surgical resection, chemotherapy, radiotherapy and targeted therapy). In NSCLC patients, cancer cells can induce immunosuppression, growth and metastasis by modulating cell adhesion molecules of both cancer cells and immune cells. Therefore, immunotherapy is increasingly concerned due to its promising anti-tumor effect and broader indication, which targets cell adhesion molecules to reverse the process. Among these therapies, immune checkpoint inhibitors (mainly anti-PD-(L)1 and anti-CTLA-4) are most successful and have been adapted as first or second line therapy in advanced NSCLC. However, drug resistance and immune-related adverse reactions restrict its further application. Further understanding of mechanism, adequate biomarkers and novel therapies are necessary to improve therapeutic effect and alleviate adverse effect.
Collapse
Affiliation(s)
- Hongjian Yang
- Innovative Institute, China Medical University, Shenyang, China
| | - Yuxi Miao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Cancer Immune Peptide Drug Engineering Technology Research Centre, Shenyang, China
| | - Xue Jiao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Shenyang Kangwei Medical Laboratory Analysis Co. LTD, Shenyang, China
| |
Collapse
|
6
|
Huang J, Yeung AM, Nguyen KT, Xu NY, Preiser JC, Rushakoff RJ, Seley JJ, Umpierrez GE, Wallia A, Drincic AT, Gianchandani R, Lansang MC, Masharani U, Mathioudakis N, Pasquel FJ, Schmidt S, Shah VN, Spanakis EK, Stuhr A, Treiber GM, Klonoff DC. Hospital Diabetes Meeting 2022. J Diabetes Sci Technol 2022; 16:1309-1337. [PMID: 35904143 PMCID: PMC9445340 DOI: 10.1177/19322968221110878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The annual Virtual Hospital Diabetes Meeting was hosted by Diabetes Technology Society on April 1 and April 2, 2022. This meeting brought together experts in diabetes technology to discuss various new developments in the field of managing diabetes in hospitalized patients. Meeting topics included (1) digital health and the hospital, (2) blood glucose targets, (3) software for inpatient diabetes, (4) surgery, (5) transitions, (6) coronavirus disease and diabetes in the hospital, (7) drugs for diabetes, (8) continuous glucose monitoring, (9) quality improvement, (10) diabetes care and educatinon, and (11) uniting people, process, and technology to achieve optimal glycemic management. This meeting covered new technology that will enable better care of people with diabetes if they are hospitalized.
Collapse
Affiliation(s)
| | | | | | - Nicole Y. Xu
- Diabetes Technology Society, Burlingame, CA, USA
| | | | | | | | | | - Amisha Wallia
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | | - Umesh Masharani
- University of California San Francisco, San Francisco, CA, USA
| | | | | | | | - Viral N. Shah
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO, USA
| | | | | | | | - David C. Klonoff
- Diabetes Research Institute, Mills-Peninsula Medical Center, San Mateo, CA, USA
- David C. Klonoff, MD, FACP, FRCP (Edin), Fellow AIMBE, Diabetes Research Institute, Mills-Peninsula Medical Center, 100 South San Mateo Drive, Room 5147, San Mateo, CA 94401, USA.
| |
Collapse
|
7
|
Wu ZX, Huang X, Cai MJ, Huang PD, Guan Z. Development and Validation of a Prognostic Index Based on Genes Participating in Autophagy in Patients With Lung Adenocarcinoma. Front Oncol 2022; 11:799759. [PMID: 35145906 PMCID: PMC8821527 DOI: 10.3389/fonc.2021.799759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/22/2021] [Indexed: 12/24/2022] Open
Abstract
BackgroundLung adenocarcinoma (LUAD) is a deadly respiratory system malignancy with poor prognosis. Autophagy is essential for the beginning, development, and therapy resistance of cancer. However, the expression of genes participating in autophagy in LUAD and their associations with prognosis remain unclear.MethodsPredictive genes participating in autophagy in LUAD samples from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets were investigated. TCGA and GEO cohorts were divided into two risk groups, while the low-risk group having a longer overall survival (OS) time. This article aims to point out the interaction between genes participating in autophagy and immune function, immune checkpoints, and m6a in LUAD. The prediction model was designed for exploring least absolute shrinkage and selection operator (LASSO) regression. It has been revealed that gene expression and autophagy are inextricably connected.ResultsGenes participating in autophagy were shown to be somewhat overexpressed in the high-risk group even though no different clinical symptoms were present, indicating that they might be used in a model to predict LUAD prognosis. The majority of genes participating in autophagy prognostic signatures controlled immunological and tumor-related pathways, according to gene set enrichment analysis (GSEA). KRT6A, KYNU, IGFBP1, DKK1, PKP2, PLEK2, GAPDH, FLNC, and NTSR1 might be related to the oncology process for LUAD patients. CERS4, CMAHP, and PLEKHB1 have been identified as being associated with low risk in patients with LUAD. Furthermore, the immune function and m6a gene expression differed significantly between the two groups.ConclusionsGenes participating in autophagy are connected to the development and progression of LUAD. LUAD patients’ prognoses are often foreseen utilizing matched prognostic models. Genes participating in autophagy in LUAD may be therapeutic targets that ought to be investigated more.
Collapse
Affiliation(s)
- Zi-Xuan Wu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuyan Huang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | | | - Pei-Dong Huang
- Yunnan University of Chinese Medicine, Kunming, China
- *Correspondence: Pei-Dong Huang,
| | - Zunhui Guan
- Kunming Municipal Hospital of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
8
|
Yuan C, Huang M, Wang H, Jiang W, Su C, Zhou S. Pretreatment Fibrinogen-Albumin Ratio (FAR) Associated with Treatment Response and Survival in Advanced Non-Small Cell Lung Cancer Patients Treated with First-Line Anti-PD-1 Therapy Plus Platinum-Based Combination Chemotherapy. Cancer Manag Res 2022; 14:377-386. [PMID: 35115834 PMCID: PMC8801367 DOI: 10.2147/cmar.s347547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/30/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose PD-1 inhibitors have been routinely used to treat advanced non-small cell lung cancer (NSCLC) and have significantly improved clinical outcomes. In this study, we aimed to explore the influence of pretreatment fibrinogen-albumin ratio (FAR) on treatment response and survival in advanced NSCLC patients treated with first-line anti-PD-1 therapy plus platinum-based combination chemotherapy. Patients and Methods A total of 91 patients with advanced NSCLC were included in the study. All patients received at least two cycles of systemic first-line anti-PD-1 therapy plus platinum-based combination chemotherapy. Receiver operating characteristics analysis was performed to determine the optimal cutoff values of FAR. Univariate and multivariate analyses were used to identify independent prognostic factors, and the Kaplan–Meier method was used to estimate survival curves. Results Multivariate logistic regression analysis showed that N stage (N2-3) and high FAR (≥0.175, optimal cutoff value) were independent predictors for objective response rate (P = 0.0002, P = 0.0005, respectively). Multivariate Cox regression analysis of progression-free survival and overall survival showed that high FAR (≥0.145) was independent prognostic factors (P = 0.0061, P = 0.0024, respectively). Progression-free survival and overall survival were significantly shorter in the high FAR (≥0.145) group than those in the low FAR (<0.145) group (P = 0.0024, P = 0.0024, respectively). Conclusion Pretreatment FAR was an independent predictor for treatment response and independent prognostic factors in advanced NSCLC patients treated with first-line anti-PD-1 therapy plus platinum-based combination chemotherapy.
Collapse
Affiliation(s)
- Chengliang Yuan
- Department of Respiratory Oncology, Guangxi Medical University Affiliated Tumor Hospital, Nanning City, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| | - Meifang Huang
- Department of Respiratory Oncology, Guangxi Medical University Affiliated Tumor Hospital, Nanning City, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| | - Huilin Wang
- Department of Respiratory Oncology, Guangxi Medical University Affiliated Tumor Hospital, Nanning City, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| | - Wei Jiang
- Department of Respiratory Oncology, Guangxi Medical University Affiliated Tumor Hospital, Nanning City, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| | - Cuiyun Su
- Department of Respiratory Oncology, Guangxi Medical University Affiliated Tumor Hospital, Nanning City, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| | - Shaozhang Zhou
- Department of Respiratory Oncology, Guangxi Medical University Affiliated Tumor Hospital, Nanning City, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
- Correspondence: Shaozhang Zhou; Cuiyun Su, Department of Respiratory Oncology, Guangxi Medical University Affiliated Tumor Hospital, Nanning City, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China, Tel +86-0771-5320761; +86-0771-5334955, Fax +86-0771-5300613, Email ;
| |
Collapse
|
9
|
Oprea-Lager DE, Cysouw MC, Boellaard R, Deroose CM, de Geus-Oei LF, Lopci E, Bidaut L, Herrmann K, Fournier LS, Bäuerle T, deSouza NM, Lecouvet FE. Bone Metastases Are Measurable: The Role of Whole-Body MRI and Positron Emission Tomography. Front Oncol 2021; 11:772530. [PMID: 34869009 PMCID: PMC8640187 DOI: 10.3389/fonc.2021.772530] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/04/2021] [Indexed: 12/14/2022] Open
Abstract
Metastatic tumor deposits in bone marrow elicit differential bone responses that vary with the type of malignancy. This results in either sclerotic, lytic, or mixed bone lesions, which can change in morphology due to treatment effects and/or secondary bone remodeling. Hence, morphological imaging is regarded unsuitable for response assessment of bone metastases and in the current Response Evaluation Criteria In Solid Tumors 1.1 (RECIST1.1) guideline bone metastases are deemed unmeasurable. Nevertheless, the advent of functional and molecular imaging modalities such as whole-body magnetic resonance imaging (WB-MRI) and positron emission tomography (PET) has improved the ability for follow-up of bone metastases, regardless of their morphology. Both these modalities not only have improved sensitivity for visual detection of bone lesions, but also allow for objective measurements of bone lesion characteristics. WB-MRI provides a global assessment of skeletal metastases and for a one-step "all-organ" approach of metastatic disease. Novel MRI techniques include diffusion-weighted imaging (DWI) targeting highly cellular lesions, dynamic contrast-enhanced MRI (DCE-MRI) for quantitative assessment of bone lesion vascularization, and multiparametric MRI (mpMRI) combining anatomical and functional sequences. Recommendations for a homogenization of MRI image acquisitions and generalizable response criteria have been developed. For PET, many metabolic and molecular radiotracers are available, some targeting tumor characteristics not confined to cancer type (e.g. 18F-FDG) while other targeted radiotracers target specific molecular characteristics, such as prostate specific membrane antigen (PSMA) ligands for prostate cancer. Supporting data on quantitative PET analysis regarding repeatability, reproducibility, and harmonization of PET/CT system performance is available. Bone metastases detected on PET and MRI can be quantitatively assessed using validated methodologies, both on a whole-body and individual lesion basis. Both have the advantage of covering not only bone lesions but visceral and nodal lesions as well. Hybrid imaging, combining PET with MRI, may provide complementary parameters on the morphologic, functional, metabolic and molecular level of bone metastases in one examination. For clinical implementation of measuring bone metastases in response assessment using WB-MRI and PET, current RECIST1.1 guidelines need to be adapted. This review summarizes available data and insights into imaging of bone metastases using MRI and PET.
Collapse
Affiliation(s)
- Daniela E. Oprea-Lager
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Matthijs C.F. Cysouw
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Christophe M. Deroose
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
- Nuclear Medicine & Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
- Biomedical Photonic Imaging Group, University of Twente, Enschede, Netherlands
| | - Egesta Lopci
- Nuclear Medicine Unit, IRCCS – Humanitas Research Hospital, Milan, Italy
| | - Luc Bidaut
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- College of Science, University of Lincoln, Lincoln, United Kingdom
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen, and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Laure S. Fournier
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Paris Cardiovascular Research Center (PARCC), Institut National de la Santé et de la Recherche Médicale (INSERM), Radiology Department, Assistance Publique-Hôpitaux de Paris (AP-HP), Hopital europeen Georges Pompidou, Université de Paris, Paris, France
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
| | - Tobias Bäuerle
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Nandita M. deSouza
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- European Imaging Biomarkers Alliance (EIBALL), European Society of Radiology, Vienna, Austria
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Frederic E. Lecouvet
- Imaging Group, European Organisation of Research and Treatment in Cancer (EORTC), Brussels, Belgium
- Department of Radiology, Institut de Recherche Expérimentale et Clinique (IREC), Cliniques Universitaires Saint Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
10
|
Hong T, Sun T, Zhang M, Liu X, Yuan Y, Dolo PR, Chen B, Zhang H. Surgical perspective in neoadjuvant chemoimmunotherapy for stage II-III non-small cell lung cancer. Thorac Cancer 2021; 12:2796-2802. [PMID: 34463034 PMCID: PMC8520798 DOI: 10.1111/1759-7714.14127] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
Background There are many studies on neoadjuvant immunotherapy for locally advanced non‐small cell lung cancer (NSCLC) patients. Expert consensus recommends neoadjuvant immunotherapy for patients with resectable stage IB–IIIA NSCLC. However, there are few clinical studies or cases to verify this. Methods Data were collected from all NSCLC patients who underwent surgical resection after neoadjuvant chemoimmunotherapy admitted to the Affiliated Hospital of Xuzhou Medical University and Xuzhou Central Hospital between September 2020 and April 2021. Data collected included patient information, relevant examination results, intraoperative parameters, postoperative complications, pathological changes, and 90‐day mortality. Results In total, 25 patients achieved R0 resection. Eleven (44%) patients completed surgery by thoracotomy, and three (12%) procedures were changed from minimally invasive procedures due to dense adhesions of hilar lymph nodes, which rendered it difficult to dissect the blood vessels. Thirteen (52%) patients achieved a major pathological response (MPR) with eight (32%) of these patients having a pathological complete response (pCR). Twenty‐two (88%) patients showed radiological regression, and three (12%) patients had stable disease. The median drainage time was 8.50 (3–27) days. Thirteen (52%) postoperative complications were observed, but none were above grade 3. Conclusions In this study, neoadjuvant chemoimmunotherapy was found to reduce tumor volume, cause pathological downstaging, and raise the surgical resection rate of patients with locally advanced NSCLC, and achieve a 100% R0 resection rate. There was an acceptable rate of postoperative complications. Thus, neoadjuvant chemoimmunotherapy is safe and practical.
Collapse
Affiliation(s)
- Tao Hong
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Thoracic Surgery Laboratory, The First College of Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Teng Sun
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Thoracic Surgery Laboratory, The First College of Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Miao Zhang
- Department of Thoracic Surgery, Xuzhou Central Hospital, Xuzhou, China
| | - Xinlong Liu
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Thoracic Surgery Laboratory, The First College of Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Yanliang Yuan
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Thoracic Surgery Laboratory, The First College of Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Ponnie Robertlee Dolo
- Department of Gastrointestinal Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Bi Chen
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hao Zhang
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Thoracic Surgery Laboratory, The First College of Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
11
|
Wang C, Li J, Zhang Q, Wu J, Xiao Y, Song L, Gong H, Li Y. The landscape of immune checkpoint inhibitor therapy in advanced lung cancer. BMC Cancer 2021; 21:968. [PMID: 34454455 PMCID: PMC8403352 DOI: 10.1186/s12885-021-08662-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/03/2021] [Indexed: 02/08/2023] Open
Abstract
Background The advent of immune checkpoint inhibitors (ICIs) therapy has resulted in significant survival benefits in patients with non-small-cell lung cancer (NSCLC) without increasing toxicity. However, the utilisation of immunotherapy for small-cell lung cancer (SCLC) remains unclear, with a scarcity of systematic comparisons of therapeutic effects and safety of immunotherapy in these two major lung cancer subtypes. Herein, we aimed to provide a comprehensive landscape of immunotherapy and systematically review its specific efficacy and safety in advanced lung cancer, accounting for histological types. Methods We identified studies assessing immunotherapy for lung cancer with predefined endpoints, including overall survival (OS), progression-free survival (PFS), objective response rate (ORR), and treatment-related adverse events (TRAE), from PubMed, Embase, Medline, and Cochrane library. A random-effects or fixed-effect model was adopted according to different settings. Results Overall, 38 trials with 20,173 patients with lung cancer were included in this study. ICI therapy resulted in a significantly prolonged survival in both patients with NSCLC and SCLC when compared with chemotherapy (hazard ratio [HR] = 0.74; 95% confidence interval [CI], 0.70–0.79] and [HR = 0.82; 95% CI, 0.75–0.90], respectively). The magnitude of disease control and survival benefits appeared superior with ICI plus standard of care (SOC) when compared with SOC alone. OS and PFS advantages were observed only when immunotherapy was employed as the first-line treatment in patients with SCLC. Conclusion ICI therapy is a promising therapeutic option in patients with NSCLC and SCLC. ICI plus SOC can be recommended as the optimal first-line treatment for patients with SCLC, and double-target ICIs combined with SOC are recommended in patients with NSCLC as both the first and subsequent lines of treatment. Additionally, non-first-line immunotherapy is not recommended in patients with SCLC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08662-2.
Collapse
Affiliation(s)
- Chengdi Wang
- Department of Respiratory and Critical Care Medicine, West China Medical School/West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Jingwei Li
- Department of Respiratory and Critical Care Medicine, West China Medical School/West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China.,West China Medical School/West China Hospital, Sichuan University, Chengdu, China
| | - Qiran Zhang
- West China Medical School/West China Hospital, Sichuan University, Chengdu, China
| | - Jiayang Wu
- West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuxuan Xiao
- West China School/Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lujia Song
- Department of Respiratory and Critical Care Medicine, West China Medical School/West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Hanlin Gong
- Department of integrated Traditional Chinese and Western Medicine, West China Medical School/West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China.
| | - Yalun Li
- Department of Respiratory and Critical Care Medicine, West China Medical School/West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
12
|
Li C, Zhang J, Yang X, Hu C, Chu T, Zhong R, Shen Y, Hu F, Pan F, Xu J, Lu J, Zheng X, Zhang H, Nie W, Han B, Zhang X. hsa_circ_0003222 accelerates stemness and progression of non-small cell lung cancer by sponging miR-527. Cell Death Dis 2021; 12:807. [PMID: 34433810 PMCID: PMC8387484 DOI: 10.1038/s41419-021-04095-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022]
Abstract
The relationship between circular RNA (circRNA) and cancer stem cells (CSCs) is uncertain. We have investigated the combined influence of CSCs, circRNA (hsa_circ_0003222), and immune checkpoint inhibitors in NSCLC progression and therapy resistance. We constructed lung CSCs (LCSCs; PC9 and A549). The effects of hsa_circ_0003222 in vitro were determined by cell counting, colony and sphere formation, and Transwell assays. A tumor xenograft model of metastasis and orthotopic model were built for in vivo analysis. We found that hsa_circ_0003222 was highly expressed in NSCLC tissues and LCSCs. Higher levels of hsa_circ_0003222 were associated with the stage, metastasis, and survival rate of patients with NSCLC. Reduced levels of hsa_circ_0003222 decreased tumor cell proliferation, migration, invasion, stemness-like properties, and chemoresistance. The silencing of hsa_circ_0003222 was found to downregulate PHF21B expression and its downstream, β-catenin by relieving the sponging effect of miR-527. Moreover, silencing hsa_circ_0003222 alleviated NSCLC resistance to anti-programmed cell death-ligand 1 (PD-L1)-based therapy in vivo. Our data demonstrate the significant role of hsa_circ_0003222 in NSCLC cell stemness-like properties. The manipulation of circRNAs in combination with anti-PD-L1 therapy may alleviate NSCLC stemness and progression.
Collapse
Affiliation(s)
- Changhui Li
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaqi Zhang
- Shanghai TCM-Integrated Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Xiaohua Yang
- Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng Hu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tianqing Chu
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Runbo Zhong
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yinchen Shen
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Hu
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Pan
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jianlin Xu
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Lu
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxuan Zheng
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hai Zhang
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Nie
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Baohui Han
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Xueyan Zhang
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
13
|
Chen H, Han KD, He ZJ, Huang YS. How to Choose a Survival Period? The Impact of Antibiotic Use on OS or PFS in NSCLC Patients Treated With Immune Checkpoint Inhibitors: A Systematic Review and Meta-Analysis. Technol Cancer Res Treat 2021; 20:15330338211033498. [PMID: 34323149 PMCID: PMC8330456 DOI: 10.1177/15330338211033498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: The development of immunotherapy has dramatically changed the treatment of non-small-cell lung cancer. The negative association of antibiotics on the clinical activity of immune checkpoint inhibitors in patients with NSCLC is well known. Methods: PubMed, Embase, and Medline databases were searched until January 11, 2020. We included retrospective studies of ICIs (e.g., PD-1, PD-L1, and CTLA-4). The clinical outcomes were progression-free survival (PFS) and overall survival (OS). Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated, and subgroup and sensitivity analyses were performed. Results: Our results indicated that the use of antibiotics reduced the survival of NSCLC patients treated with ICIs. The pooled HRs of PFS and OS were HR = 1.41 (95% CI = 1.23-1.61; P < 0.001) and HR = 2.16 (95% CI = 1.79-2.60; P < 0.001). We divided the studies into 5 subgroups according to antibiotic exposure time. Subgroup analysis showed that the patients that were administered antibiotics [−60 days; 0 days] or [−30 days; 0 days] before the initiation of ICIs treatment had a poorer OS rate, whereas those patients that were administered antibiotics [0 days; 30 days] after the initiation of ICIs treatment had a poorer PFS rate. In summary, ATB treatment in patients [−60 days; +30 days] near the initiation of ICIs treatment significantly reduced the survival in NSCLC patients. Conclusion: Our results indicated that ATB use is negatively associated with survival in NSCLC patients treated with ICIs immunotherapy. Similar studies involving a larger sample of cases are still being published. This meta-analysis identified that the timing of ATB treatment in NSCLC patients receiving ICIs immunotherapy has different effects on the OS and PFS of these patients. ATB treatment prior to the initiation of ICIs treatment affects OS, whereas ATB treatment after the initiation of ICIs treatment affects PFS.
Collapse
Affiliation(s)
- Hua Chen
- Department of Oncology, 560204Maoming people's Hospital, Maoming, Guangdong Province, China
| | - Ke-Dong Han
- Department of Cardiology, 560204Maoming people's Hospital, Maoming, Guangdong Province, China
| | - Zhi-Jiang He
- Department of Oncology, 560204Maoming people's Hospital, Maoming, Guangdong Province, China
| | - Yi-Sheng Huang
- Department of Oncology, 560204Maoming people's Hospital, Maoming, Guangdong Province, China
| |
Collapse
|
14
|
To KKW, Fong W, Cho WCS. Immunotherapy in Treating EGFR-Mutant Lung Cancer: Current Challenges and New Strategies. Front Oncol 2021; 11:635007. [PMID: 34113560 PMCID: PMC8185359 DOI: 10.3389/fonc.2021.635007] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Immune checkpoint inhibitors, including monoclonal antibodies against programmed death-1 (PD-1) and programmed death ligand-1 (PD-L1), have dramatically improved the survival and quality of life of a subset of non-small cell lung cancer (NSCLC) patients. Multiple predictive biomarkers have been proposed to select the patients who may benefit from the immune checkpoint inhibitors. EGFR-mutant NSCLC is the most prevalent molecular subtype in Asian lung cancer patients. However, patients with EGFR-mutant NSCLC show poor response to anti-PD-1/PD-L1 treatment. While small-molecule EGFR tyrosine kinase inhibitors (TKIs) are the preferred initial treatment for EGFR-mutant NSCLC, acquired drug resistance is severely limiting the long-term efficacy. However, there is currently no further effective treatment option for TKIs-refractory EGFR-mutant NSCLC patients. The reasons mediating the poor response of EGFR-mutated NSCLC patients to immunotherapy are not clear. Initial investigations revealed that EGFR-mutated NSCLC has lower PD-L1 expression and a low tumor mutational burden, thus leading to weak immunogenicity. Moreover, the use of PD-1/PD-L1 blockade prior to or concurrent with osimertinib has been reported to increase the risk of pulmonary toxicity. Furthermore, emerging evidence shows that PD-1/PD-L1 blockade in NSCLC patients can lead to hyperprogressive disease associated with dismal prognosis. However, it is difficult to predict the treatment toxicity. New biomarkers are urgently needed to predict response and toxicity associated with the use of PD-1/PD-L1 immunotherapy in EGFR-mutated NSCLC. Recently, promising data have emerged to suggest the potentiation of PD-1/PD-L1 blockade therapy by anti-angiogenic agents and a few other novel therapeutic agents. This article reviews the current investigations about the poor response of EGFR-mutated NSCLC to anti-PD-1/PD-L1 therapy, and discusses the new strategies that may be adopted in the future.
Collapse
Affiliation(s)
- Kenneth K. W. To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Winnie Fong
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - William C. S. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|