1
|
Khan T, Abdullah M, Toor TF, Almajhdi FN, Suleman M, Iqbal A, Ali L, Khan A, Waheed Y, Wei DQ. Evaluation of the Whole Proteome of Achromobacter xylosoxidans to Identify Vaccine Targets for mRNA and Peptides-Based Vaccine Designing Against the Emerging Respiratory and Lung Cancer-Causing Bacteria. Front Med (Lausanne) 2022; 8:825876. [PMID: 35186980 PMCID: PMC8854494 DOI: 10.3389/fmed.2021.825876] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/29/2021] [Indexed: 02/05/2023] Open
Abstract
Achromobacter xylosoxidans is a rod-shaped Gram-negative bacterium linked with causing several infections which mostly includes hematological malignancies. It has been recently reported to be associated with the development and progression of lung cancer and is an emerging respiratory disease-causing bacterium. The treatment of individuals infected with A. xylosoxidans bacteremia is difficult due to the fact that this pathogen has both intrinsic and acquired resistance mechanisms, typically resulting in a phenotype of multidrug resistance (MDR). Efforts are needed to design effective therapeutic strategies to curtail the emergence of this bacterium. Computational vaccine designing has proven its effectiveness, specificity, safety, and stability compared to conventional approaches of vaccine development. Therefore, the whole proteome of A. xylosoxidans was screened for the characterization of potential vaccine targets through subtractive proteomics pipeline for therapeutics design. Annotation of the whole proteome confirmed the three immunogenic vaccine targets, such as (E3HHR6), (E3HH04), and (E3HWA2), which were used to map the putative immune epitopes. The shortlisted epitopes, specific against Cytotoxic T Lymphocytes, Helper T-cell Lymphocytes, and linear B-Cell, were used to design the mRNA and multi-epitopes vaccine (MEVC). Initial validations confirmed the antigenic and non-allergenic properties of these constructs, followed by docking with the immune receptor, TLR-5, which resulted in robust interactions. The interaction pattern that followed in the docking complex included formation of 5 hydrogen bonds, 2 salt bridges, and 165 non-bonded contacts. This stronger binding affinity was also assessed through using the mmGBSA approach, showing a total of free binding energy of -34.64 kcal/mol. Further validations based on in silico cloning revealed a CAI score of 0.98 and an optimal percentage of GC contents (54.4%) indicated a putatively higher expression of the vaccine construct in Escherichia coli. Moreover, immune simulation revealed strong antibodies production upon the injection of the designed MEVC that resulted in the highest peaks of IgM+ IgG production (>3,500) between 10 and 15 days. In conclusion the current study provide basis for vaccine designing against the emerging A. xylosoxidans, which demands further experimental studies for in vitro and in vivo validations.
Collapse
Affiliation(s)
- Taimoor Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | | | | | - Fahad N. Almajhdi
- Department of Botany and Microbiology, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Suleman
- Centre for Biotechnology and Microbiology, University of Swat, Kanju, Pakistan
| | - Arshad Iqbal
- Centre for Biotechnology and Microbiology, University of Swat, Kanju, Pakistan
| | - Liaqat Ali
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yasir Waheed
- Foundation University Medical College, Foundation University Islamabad, Islamabad, Pakistan
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Microbial Metabolism, Joint Laboratory of International Laboratory of Metabolic and Developmental Sciences, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Peng Cheng Laboratory, Shenzhen, China
| |
Collapse
|
2
|
Matijasic N, Tripalo Batos A, Lenicek Krleza J, Rogulj M, Pavic I. Achromobacter xylosoxidans Purulent Bronchitis in a Previously Healthy Child: An Unexpected Consequence of COVID-19 Infection. Cureus 2022; 14:e21711. [PMID: 35242477 PMCID: PMC8884523 DOI: 10.7759/cureus.21711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2022] [Indexed: 11/25/2022] Open
Abstract
Achromobacter xylosoxidans is an aerobic, Gram-negative rod with a broad intrinsic and acquired antimicrobial resistance, usually isolated in patients with cystic fibrosis (CF), immunodeficiencies, or those undergoing invasive procedures. We report a case of a previously healthy 14-year-old girl who was hospitalized in our institution due to a prolonged, progressive cough and exertional dyspnea, which started after a mild viral respiratory tract infection. To elucidate the cause of her symptoms, a bronchoscopy was finally performed, showing bilateral purulent bronchitis caused by A. xylosoxidans, isolated from bronchoalveolar lavage (BAL) sample. Since the patient had positive serological testing for coronavirus disease 2019 (COVID-19), we concluded that it was the initial viral infection, although of a mild clinical course, the one that created favorable conditions for proliferation and further inflammation caused by A. xylosoxidans.
Collapse
|
3
|
Retraction: a case of meningitis due to Achromobacter xylosoxidans in a child with a polymalformative syndrome: a case report. Pan Afr Med J 2021; 40:89. [PMID: 34707772 PMCID: PMC8514459 DOI: 10.11604/pamj.2021.40.89.31949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 11/11/2022] Open
Abstract
This article retracts the publication “Achromobacter xylosoxidans in a child with a polymalformative syndrome: a case report” by Mehdi Borni et al. for instances of image manipulation and plagiarism.
Collapse
Affiliation(s)
- The Pan African Medical Journal
- Park Suite Building, Parkland Road, Nairobi, Kenya
- Corresponding author: The Pan African Medical Journal, Park Suite Building, Parkland Road, Nairobi, Kenya.
| |
Collapse
|