1
|
Gareev I, Jiang J, Beylerli O, Beilerli A, Ilyasova T, Shumadalova A, Bai Y, Du W, Yang B. Adjuvant Anti-tumor Therapy with Polyphenolic Compounds: A Review. Curr Med Chem 2025; 32:1934-1967. [PMID: 40351076 DOI: 10.2174/0109298673284605240301035057] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/25/2023] [Accepted: 01/03/2024] [Indexed: 05/14/2025]
Abstract
The search for effective methods of treatment and prevention of oncological diseases, despite the successes achieved in recent decades, remains one of the most urgent issues in modern medicine. It is known that chemotherapy and radiation therapy are based on the induction of cell death by increasing the intracellular concentration of reactive oxygen species (ROS). To increase the effectiveness of chemo- and radiotherapy, inducing and increasing oxidative stress in tumor cells has been proposed. A new class of promising adjuvants in combination with anticancer therapy, which has already been shown to be effective in preclinical and clinical studies, includes natural and synthetic polyphenols. Polyphenolic compounds not only exhibit antitumor activity but also significantly reduce the resistance of tumor cells to chemo- and radiotherapy. However, almost all chemotherapeutic drugs and regimens of radiation treatment have a damaging toxic effect on normal tissues, which significantly affects the quality of life of patients, and treatment options for managing these side effects are limited. In this regard, some of the most promising agents for the management of toxic side effects are natural polyphenols. This study discusses the possible molecular mechanisms and prospects for the clinical use of natural and synthetic polyphenolic compounds in chemo- and radiotherapy. In addition, the protective role/effect of polyphenols on the effects of chemoand radiotherapy in tumor patients is discussed.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Central Research Laboratory, Department of Pharmacology, Bashkir State Medical University, Republic of Bashkortostan, 3 Lenin Street, Ufa, 450008, Russia
| | - Jianhao Jiang
- The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150067, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, P.R. China
| | - Ozal Beylerli
- Central Research Laboratory, Department of Pharmacology, Bashkir State Medical University, Republic of Bashkortostan, 3 Lenin Street, Ufa, 450008, Russia
| | - Aferin Beilerli
- Department of Obstetrics and Gynecology, Tyumen State Medical University, 54 Odesskaya Street, 625023, Tyumen, Russia
| | - Tatiana Ilyasova
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin Street, Ufa, 450008, Russia
| | - Alina Shumadalova
- Department of General Chemistry, Bashkir State Medical University, Republic of Bashkortostan, 3 Lenin Street, Ufa, 450008, Russia
| | - Yunlong Bai
- The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150067, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, P.R. China
| | - Weijie Du
- The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150067, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, P.R. China
| | - Baofeng Yang
- The State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150067, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, P.R. China
| |
Collapse
|
2
|
Kitsios K, Trakatelli CM, Antza C, Triantafyllou A, Sarigianni M, Kotsis V. Treatment of Metabolic (Dysfunction)-Associated Fatty Liver Disease: Evidence from Randomized Controlled Trials-A Short Review. Metab Syndr Relat Disord 2024; 22:703-708. [PMID: 39088384 DOI: 10.1089/met.2024.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024] Open
Abstract
Metabolic-associated fatty liver disease (MALFD) is a highly prevalent and progressive disease, strongly related to obesity, metabolic syndrome, and cardiovascular disease. It comprises a spectrum of liver pathology from steatosis (fat accumulation in the hepatocytes) to steatosis with inflammation (metabolic-associated steatohepatitis, MASH), fibrosis, cirrhosis, and hepatocellular carcinoma. There is currently only one medication, resmetirom, US Food and Drug Administration approved for the treatment of MALFD. Evidence from randomized trials supports the efficacy of hypocaloric diets and exercise in MASH resolution. Moreover, substantial weight loss after bariatric surgery can lead to significant and longitudinally sustained MASH resolution, improvement in liver fibrosis, and decrease in the risk of major cardiovascular adverse events. Pioglitazone, an insulin sensitizer, initiated at the early stages, before the progression to fibrosis, may be effective in resolution of MASH in patients with or without type 2 diabetes. Glucagon-like peptide-1 (GLP-1) receptor agonists (RAs), semaglutide and liraglutide, may also be effective in resolution of MASH but not of fibrosis. Preliminary data from interventions with tirzepatide, a dual GLP-1 and glucose-dependent insulinotropic polypeptide RA, and sodium-glucose cotransporter 2 inhibitors are encouraging, but more data based on liver biopsy are needed.
Collapse
Affiliation(s)
- Konstantinos Kitsios
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Christina-Maria Trakatelli
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Christina Antza
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Areti Triantafyllou
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Maria Sarigianni
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Vasilios Kotsis
- Third Department of Internal Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Thessaloniki, Greece
| |
Collapse
|
3
|
Katsaros I, Sotiropoulou M, Vailas M, Kapetanakis EI, Valsami G, Tsaroucha A, Schizas D. Quercetin's Potential in MASLD: Investigating the Role of Autophagy and Key Molecular Pathways in Liver Steatosis and Inflammation. Nutrients 2024; 16:3789. [PMID: 39599578 PMCID: PMC11597035 DOI: 10.3390/nu16223789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/27/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MASLD) is a widespread liver disorder characterized by excessive fat accumulation in the liver, commonly associated with metabolic syndrome components such as obesity, diabetes, and dyslipidemia. With a global prevalence of up to 30%, MASLD is projected to affect over 100 million people in the U.S. and 20 million in Europe by 2030. The disease ranges from Steatotic Lived Disease (SLD) to more severe forms like metabolic dysfunction-associated steatohepatitis (MASH), which can progress to cirrhosis and hepatocellular carcinoma. Autophagy, a cellular process crucial for lipid metabolism and homeostasis, is often impaired in MASLD, leading to increased hepatic lipid accumulation and inflammation. Key autophagy-related proteins, such as Beclin1, LC3A, SQSTM1 (p62), CD36, and Perilipin 3, play significant roles in regulating this process. Disruption in these proteins contributes to the pathogenesis of MASLD. Quercetin, a natural polyphenolic flavonoid with antioxidant and anti-inflammatory properties, has promising results in mitigating MASLD. It may reduce hepatic lipid accumulation, improve mitochondrial function, and enhance autophagy. However, further research is needed to elucidate its mechanisms and validate its therapeutic potential in clinical settings. This underscores the need for continued investigation into autophagy and novel treatments for MASLD.
Collapse
Affiliation(s)
- Ioannis Katsaros
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 17 AgiouThoma Str., Athens 11527, Greece; (M.S.); (M.V.); (D.S.)
| | - Maria Sotiropoulou
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 17 AgiouThoma Str., Athens 11527, Greece; (M.S.); (M.V.); (D.S.)
| | - Michail Vailas
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 17 AgiouThoma Str., Athens 11527, Greece; (M.S.); (M.V.); (D.S.)
| | - Emmanouil Ioannis Kapetanakis
- Department of Thoracic Surgery, National and Kapodistrian University of Athens, Attikon University Hospital, Athens12462, Greece;
| | - Georgia Valsami
- Laboratory of Biopharmaceutics-Pharmacokinetics, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15774, Greece;
| | - Alexandra Tsaroucha
- Laboratory of Experimental Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis 68100, Greece;
| | - Dimitrios Schizas
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 17 AgiouThoma Str., Athens 11527, Greece; (M.S.); (M.V.); (D.S.)
| |
Collapse
|
4
|
Li M, Li H, Lu L, Fu J, Ao H, Han M, Guo Y, Zhang H, Wang Z, Wang X. Simple preparation and greatly improved oral bioavailability: The supersaturated drug delivery system of quercetin based on PVP K30. Drug Deliv Transl Res 2024; 14:3225-3238. [PMID: 38421545 DOI: 10.1007/s13346-024-01544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
Quercetin, as a representative flavonoid, is widely present in daily diet and has been developed as a dietary supplement due to its beneficial physiological activities. However, the application of quercetin is limited due to its poor water solubility and extensive metabolism. So far, the nano-drug delivery systems designed to improve its bioavailability generally have the shortcomings of low drug loading content and difficulty in industrial production. In order to tackle these problems, quercetin supersaturated drug delivery system (QSDDS) was successfully prepared using solvent method, for which PVP K30 was employed as a crystallization and precipitation inhibitor to maintain the supersaturated state of quercetin in aqueous system. The obtained QSDDS, with a relative high drug loading content of 13%, could quickly disperse in water and form colloidal system with the mean particle size of about 200 nm, meanwhile induce the generation of supersaturated quercetin solution more than 12 h. In vivo pharmacokinetic study proved that QSDDS achieved a high absolute bioavailability of 36.05%, 10 times as that of physical quercetin suspension, which was dose-dependent with higher bioavailability at higher dose. Considering the simple preparation method, QSDDS provided a feasible strategy and a simple way to improve oral absorption of insoluble flavonoids.
Collapse
Affiliation(s)
- Manzhen Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Haowen Li
- PK-ADME, Pharmaron Beijing, Beijing E-Town, 100176, China
| | - Likang Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Jingxin Fu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Hui Ao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, China
| | - Hongda Zhang
- Jiangsu Kanion Parmaceutical Co. Ltd, Jiangsu, Lianyungang, 222001, China
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture and Kanion Pharmaceutical Co. Ltd., Jiangsu, Lianyungang, 222001, China
| | - Zhenzhong Wang
- Jiangsu Kanion Parmaceutical Co. Ltd, Jiangsu, Lianyungang, 222001, China.
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture and Kanion Pharmaceutical Co. Ltd., Jiangsu, Lianyungang, 222001, China.
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
5
|
Ungurianu A, Zanfirescu A, Margină D. Exploring the therapeutic potential of quercetin: A focus on its sirtuin-mediated benefits. Phytother Res 2024; 38:2361-2387. [PMID: 38429891 DOI: 10.1002/ptr.8168] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 03/03/2024]
Abstract
As the global population ages, preventing lifestyle- and aging-related diseases is increasing, necessitating the search for safe and affordable therapeutic interventions. Among nutraceuticals, quercetin, a flavonoid ubiquitously present in various plants, has garnered considerable interest. This review aimed to collate and analyze existing literature on the therapeutic potentials of quercetin, especially its interactions with SIRTs and its clinical applicability based on its bioavailability and safety. This narrative review was based on a literature survey spanning from 2015 to 2023 using PUBMED. The keywords and MeSH terms used were: "quercetin" AND "bioavailability" OR "metabolism" OR "metabolites" as well as "quercetin" AND "SIRTuin" OR "SIRT*" AND "cellular effects" OR "pathway" OR "signaling" OR "neuroprotective" OR "cardioprotective" OR "nephroprotective" OR "antiatherosclerosis" OR "diabetes" OR "antidiabetic" OR "dyslipidemia" AND "mice" OR "rats". Quercetin demonstrates multiple therapeutic activities, including neuroprotective, cardioprotective, and anti-atherosclerotic effects. Its antioxidant, anti-inflammatory, antiviral, and immunomodulatory properties are well-established. At a molecular level, it majorly interacts with SIRTs, particularly SIRT1 and SIRT6, and modulates numerous signaling pathways, contributing to its therapeutic effects. These pathways play roles in reducing oxidative stress, inflammation, autophagy regulation, mitochondrial biogenesis, glucose utilization, fatty acid oxidation, and genome stability. However, clinical trials on quercetin's effectiveness in humans are scarce. Quercetin exhibits a wide range of SIRT-mediated therapeutic effects. Despite the compelling preclinical data, more standardized clinical trials are needed to fully understand its therapeutic potential. Future research should focus on addressing its bioavailability and safety concerns.
Collapse
Affiliation(s)
- Anca Ungurianu
- Carol Davila University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Biochemistry, Bucharest, Romania
| | - Anca Zanfirescu
- Faculty of Pharmacy, Department of Pharmacology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Denisa Margină
- Carol Davila University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Biochemistry, Bucharest, Romania
| |
Collapse
|
6
|
Gong P, Long H, Guo Y, Wang Z, Yao W, Wang J, Yang W, Li N, Xie J, Chen F. Chinese herbal medicines: The modulator of nonalcoholic fatty liver disease targeting oxidative stress. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116927. [PMID: 37532073 DOI: 10.1016/j.jep.2023.116927] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plants are a natural treasure trove; their secondary metabolites participate in several pharmacological processes, making them a crucial component in the synthesis of novel pharmaceuticals and serving as a reserve resource foundation in this process. Nonalcoholic fatty liver disease (NAFLD) is associated with the risk of progression to hepatitis and liver cancer. The "Treatise on Febrile Diseases," "Compendium of Materia Medica," and "Thousand Golden Prescriptions" have listed herbal remedies to treat liver diseases. AIM OF THE REVIEW Chinese herbal medicines have been widely used for the prevention and treatment of NAFLD owing to their efficacy and low side effects. The production of reactive oxygen species (ROS) during NAFLD, and the impact and potential mechanism of ROS on the pathogenesis of NAFLD are discussed in this review. Furthermore, common foods and herbs that can be used to prevent NAFLD, as well as the structure-activity relationships and potential mechanisms, are discussed. METHODS Web of Science, PubMed, CNKI database, Google Scholar, and WanFang database were searched for natural products that have been used to treat or prevent NAFLD in the past five years. The primary search was performed using the following keywords in different combinations in full articles: NAFLD, herb, natural products, medicine, and ROS. More than 400 research papers and review articles were found and analyzed in this review. RESULTS By classifying and discussing the literature, we obtained 86 herbaceous plants, 28 of which were derived from food and 58 from Chinese herbal medicines. The mechanism of NAFLD was proposed through experimental studies on thirteen natural compounds (quercetin, hesperidin, rutin, curcumin, resveratrol, epigallocatechin-3-gallate, salvianolic acid B, paeoniflorin, ginsenoside Rg1, ursolic acid, berberine, honokiol, emodin). The occurrence and progression of NAFLD could be prevented by natural antioxidants through several pathways to prevent ROS accumulation and reduce hepatic cell injuries caused by excessive ROS. CONCLUSION This review summarizes the natural products and routinely used herbs (prescription) in the prevention and treatment of NAFLD. Firstly, the mechanisms by which natural products improve NAFLD through antioxidant pathways are elucidated. Secondly, the potential of traditional Chinese medicine theory in improving NAFLD is discussed, highlighting the safety of food-medicine homology and the broader clinical potential of multi-component formulations in improving NAFLD. Aiming to provide theoretical basis for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Pin Gong
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Hui Long
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yuxi Guo
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Zhineng Wang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Wenbo Yao
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jing Wang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Wenjuan Yang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Nan Li
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jianwu Xie
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China.
| |
Collapse
|
7
|
Perna S, Rafique A, Rondanelli M, Allehdan S, Riso P, Marino M. Effect of caper fruit (Capparis spinosa L.) consumption on liver enzymes, lipid profile, fasting plasma glucose, and weight loss. A systematic review and a preliminary meta-analysis of randomized controlled trials. Biomed Pharmacother 2023; 168:115638. [PMID: 37806093 DOI: 10.1016/j.biopha.2023.115638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/18/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023] Open
Abstract
This systematic review and meta-analysis aimed to evaluate the overall effect of caper fruit on the modulation of glycemic, lipid profile, liver enzymes, and body mass. Google Scholar, PubMed, and Scopus were explored to collect relevant studies in the last 10 years. RCTs with caper fruit supplementation or consumption in different cohorts of subjects with non-alcoholic fatty liver disease (NAFLD), Type-2-Diabetes (T2D), metabolic syndrome, and hyperlipidemia were included in this systematic review with a mean intervention duration from 2 to 12 weeks. The outcomes measured in this meta-analysis were liver enzymes such as aspartate aminotransferase (AST) and alanine aminotransferase (ALT), the lipid profile represented by triglycerides, total cholesterol (TC) with LDL and HDL and also, weight, and fasting blood glucose. Five randomized controlled trials, which involved a total of 178 adults, were included. According to the results, caper fruit seems to decrease liver enzymes ALT -12.29 U/L [-24.47, -0.11], AST -2.20 U/L [-4.70, 0.31]. Furthermore, the lipid profile seems to improve with a decrease in triglycerides. -11.89 mg/dL [-33.73, 9.95], LDL -4.80 mg/dL [-16.34, 6.74], HDL 0.72 mg/dL [0.10, 1.34], total cholesterol -7.83 mg/dL [-20.04, 4.38], FPG -17.93 [-42.66, 6.79], weight -1.00 kg [-1.44, -0.56]. Significant modulations were found only for ALT, HDL, and weight. In conclusion, this systematic review and meta-analysis showed the paucity of data available on the topic while showing the potential role of caper fruit as a promising food for improving the liver-lipid profile axis in patients with metabolic syndrome and diabetes. Further studies are required to confirm these results.
Collapse
Affiliation(s)
- Simone Perna
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Human Nutrition, Università degli Studi di Milano, Milano, Italy.
| | - Ayesha Rafique
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus P. O. Box 32038, Bahrain.
| | - Mariangela Rondanelli
- IRCCS Mondino Foundation, 27100 Pavia, Italy; Unit of Human and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy.
| | - Sabika Allehdan
- Department of Biology, College of Science, University of Bahrain, Sakhir Campus P. O. Box 32038, Bahrain.
| | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Human Nutrition, Università degli Studi di Milano, Milano, Italy
| | - Mirko Marino
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Human Nutrition, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
8
|
Li L, Ji K, Du F, Jin N, Boesch C, Farag MA, Li H, Liu X, Xiao J. Does Flavonoid Supplementation Alleviate Non-Alcoholic Fatty Liver Disease? A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Mol Nutr Food Res 2023; 67:e2300480. [PMID: 37877662 DOI: 10.1002/mnfr.202300480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/22/2023] [Indexed: 10/26/2023]
Abstract
SCOPE Higher flavonoid intake is associated with reduced risk of non-alcoholic fatty liver disease (NAFLD). However, there is a large discrepancy in the effects of flavonoid supplementation on NAFLD. To fill such knowledge gap, we systematically reviewed randomized clinical trials (RCTs) to critically assess flavonoid supplementation effect on liver function, lipid profile, inflammation, and insulin resistance in adults with NAFLD. METHODS AND RESULTS A systematic search was conducted from 4 databases from inception until May 2023. Twelve RCTs were included in the final analysis demonstrating beneficial effects of flavonoids on ALT (SMD = -3.59, p = 0.034), AST (SMD = -4.47, p = 0.001), GGT (SMD = -8.70, p = 0.000), CK-18M30 (SMD = -0.35, p = 0.042), TG (SMD = -0.37, p = 0.001), LDL-C (SMD = -0.38, p = 0.039), TC (MD = -0.25 mmol/l, p = 0.017), steatosis score (MD = -18.97, p = 0.30), TNF-α (MD = -0.88, p = 0.000), and NF-κB (MD = -1.62, p = 0.001). CONCLUSION This meta-analysis suggests that flavonoid alleviates NAFLD through exerting favourable effects on liver function, lipid profile, and inflammation, indicating flavonoid supplementation presents a promising drug regimen for the management of NAFLD and its associated complications.
Collapse
Affiliation(s)
- Lu Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Kexin Ji
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Fengqi Du
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Nini Jin
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Christine Boesch
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - He Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Xinqi Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, Ourense, 36310, Spain
| |
Collapse
|
9
|
Mirza MA, Mahmood S, Hilles AR, Ali A, Khan MZ, Zaidi SAA, Iqbal Z, Ge Y. Quercetin as a Therapeutic Product: Evaluation of Its Pharmacological Action and Clinical Applications-A Review. Pharmaceuticals (Basel) 2023; 16:1631. [PMID: 38004496 PMCID: PMC10674654 DOI: 10.3390/ph16111631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Quercetin is the major polyphenolic flavonoid that belongs to the class called flavanols. It is found in many foods, such as green tea, cranberry, apple, onions, asparagus, radish leaves, buckwheat, blueberry, broccoli, and coriander. It occurs in many different forms, but the most abundant quercetin derivatives are glycosides and ethers, namely, Quercetin 3-O-glycoside, Quercetin 3-sulfate, Quercetin 3-glucuronide, and Quercetin 3'-metylether. Quercetin has antioxidant, anti-inflammatory, cardioprotective, antiviral, and antibacterial effects. It is found to be beneficial against cardiovascular diseases, cancer, diabetes, neuro-degenerative diseases, allergy asthma, peptic ulcers, osteoporosis, arthritis, and eye disorders. In pre-clinical and clinical investigations, its impacts on various signaling pathways and molecular targets have demonstrated favorable benefits for the activities mentioned above, and some global clinical trials have been conducted to validate its therapeutic profile. It is also utilized as a nutraceutical due to its pharmacological properties. Although quercetin has several pharmacological benefits, its clinical use is restricted due to its poor water solubility, substantial first-pass metabolism, and consequent low bioavailability. To circumvent this limited bioavailability, a quercetin-based nanoformulation has been considered in recent times as it manifests increased quercetin uptake by the epithelial system and enhances the delivery of quercetin to the target site. This review mainly focuses on pharmacological action, clinical trials, patents, marketed products, and approaches to improving the bioavailability of quercetin with the use of a nanoformulation.
Collapse
Affiliation(s)
- Mohd Aamir Mirza
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (M.A.M.); (S.A.A.Z.)
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Ayah Rebhi Hilles
- INHART, International Islamic University Malaysia, Jalan Gombak, Kuala Lumpur 53100, Malaysia;
| | - Abuzer Ali
- Department of Pharmacognosy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| | - Mohammed Zaafar Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (M.A.M.); (S.A.A.Z.)
| | - Syed Amir Azam Zaidi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (M.A.M.); (S.A.A.Z.)
| | - Zeenat Iqbal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (M.A.M.); (S.A.A.Z.)
| | - Yi Ge
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
10
|
Kiouas K, Oussedik-Oumehdi H, Laraba-Djebari F. Therapeutic outcome of quercetin nanoparticles on Cerastes cerastes venom-induced hepatorenal toxicity: a preclinical study. Nanomedicine (Lond) 2023; 18:367-390. [PMID: 37125660 DOI: 10.2217/nnm-2022-0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Aim: The objective of this study was to investigate the therapeutic potential of quercetin (QT) and QT-loaded poly(lactic-co-glycolic acid) nanoparticles (QT-NPs) on Cerastes cerastes venom-mediated inflammation, redox imbalance, hepatorenal tissue damage and local hemorrhage. Methods: The developed QT-NPs were first submitted to physicochemical characterization and then evaluated in the 'challenge then treat' and 'preincubation' models of envenoming. Results: QT-NPs efficiently alleviated hepatorenal toxicity, inflammation and redox imbalance and significantly attenuated venom-induced local hemorrhage. Interestingly, QT-NPs were significantly more efficient than free QT at 24 h post-envenoming, pointing to the efficacy of this drug-delivery system. Conclusion: These findings highlight the therapeutic potential of QT-NPs on venom-induced toxicity and open up the avenue for their use in the management of snakebite envenoming.
Collapse
Affiliation(s)
- Kahina Kiouas
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular & Molecular Biology, BP 32, El-Alia, Bab Ezzouar, 16111, Algiers, Algeria
| | - Habiba Oussedik-Oumehdi
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular & Molecular Biology, BP 32, El-Alia, Bab Ezzouar, 16111, Algiers, Algeria
| | - Fatima Laraba-Djebari
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular & Molecular Biology, BP 32, El-Alia, Bab Ezzouar, 16111, Algiers, Algeria
| |
Collapse
|
11
|
Duda-Chodak A, Tarko T. Possible Side Effects of Polyphenols and Their Interactions with Medicines. Molecules 2023; 28:molecules28062536. [PMID: 36985507 PMCID: PMC10058246 DOI: 10.3390/molecules28062536] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Polyphenols are an important component of plant-derived food with a wide spectrum of beneficial effects on human health. For many years, they have aroused great interest, especially due to their antioxidant properties, which are used in the prevention and treatment of many diseases. Unfortunately, as with any chemical substance, depending on the conditions, dose, and interactions with the environment, it is possible for polyphenols to also exert harmful effects. This review presents a comprehensive current state of the knowledge on the negative impact of polyphenols on human health, describing the possible side effects of polyphenol intake, especially in the form of supplements. The review begins with a brief overview of the physiological role of polyphenols and their potential use in disease prevention, followed by the harmful effects of polyphenols which are exerted in particular situations. The individual chapters discuss the consequences of polyphenols’ ability to block iron uptake, which in some subpopulations can be harmful, as well as the possible inhibition of digestive enzymes, inhibition of intestinal microbiota, interactions of polyphenolic compounds with drugs, and impact on hormonal balance. Finally, the prooxidative activity of polyphenols as well as their mutagenic, carcinogenic, and genotoxic effects are presented. According to the authors, there is a need to raise public awareness about the possible side effects of polyphenols supplementation, especially in the case of vulnerable subpopulations.
Collapse
|
12
|
Wang X, Ma Y, Xu Q, Shikov AN, Pozharitskaya ON, Flisyuk EV, Liu M, Li H, Vargas-Murga L, Duez P. Flavonoids and saponins: What have we got or missed? PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154580. [PMID: 36610132 DOI: 10.1016/j.phymed.2022.154580] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Flavonoids and saponins are important bioactive compounds that have attracted wide research interests. This review aims to summarise the state of the art of the pharmacology, toxicology and clinical efficacy of these compounds. METHODS Data were retrieved from PubMed, Cochrane Library, Web of Science, Proquest, CNKI, Chongqing VIP, Wanfang, NPASS and HIT 2.0 databases. Meta-analysis and systematic reviews were evaluated following the PRISMA guideline. Statistical analyses were conducted using SPSS23.0. RESULTS Rising research trends on flavonoids and saponins were observed since the 1990s and the 2000s, respectively. Studies on pharmacological targets and activities of flavonoids and saponins represent an important area of research advances over the past decade, and these important resources have been documented in open-access specialised databases and can be retrieved with ease. The rising research on flavonoids and saponins can be attributed, at least in part, to their links with some highly investigated fields of research, e.g., oxidative stress, inflammation and cancer; i.e., 6.88% and 3.03% of publications on oxidative stress cited by PubMed in 1990 - 2021 involved flavonoids and saponins, respectively, significantly higher than the percentage involving alkaloids (1.88%). The effects of flavonoids concern chronic venous insufficiency, cervical lesions, diabetes, rhinitis, dermatopathy, prostatitis, menopausal symptoms, angina pectoris, male pattern hair loss, lymphocytic leukaemia, gastrointestinal diseases and traumatic cerebral infarction, etc, while those of saponins may have impact on venous oedema in chronic deep vein incompetence, erectile dysfunction, acute impact injuries and systemic lupus erythematosus, etc. The volume of in vitro research appears way higher than in vivo and clinical studies, with only 10 meta-analyses and systematic reviews (involving 290 interventional and observational studies), and 36 clinical studies on flavonoids and saponins. Data are sorely needed on pharmacokinetics, in vitro pan-assay interferences, purity of tested compounds, interactions in complex herbal extracts, real impact of anti-oxidative strategies, and mid- and long-term toxicities. To fill these important gaps, further investigations are warranted. On the other hand, drug interactions may cause adverse effects but might also be useful for synergism, with the goals of enhancing effects or of detoxifying. Furthermore, the interactions between phytochemicals and the intestinal microbiota are worth investigating as the field may present a promising potential for novel drug development.
Collapse
Affiliation(s)
- Xuanbin Wang
- Laboratory of Chinese Herbal Pharmacology, Department of Pharmacy, Renmin Hospital; Hubei Key Laboratory of Wudang Local Chinese Medicine Research; Biomedical Research Institute; School of Pharmaceutical Sciences and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, South Renmin Road, Shiyan, 442000, China..
| | - Yan Ma
- Molecular Research in Traditional Chinese Medicine, Division of Comparative Immunology and Oncology, Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Vienna General Hospital, Medical University of Vienna
| | - Qihe Xu
- Renal Sciences and Integrative Chinese Medicine Laboratory, Department of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Alexander N Shikov
- Saint-Petersburg State Chemical Pharmaceutical University, Prof. Popov, 14, Saint-Petersburg, 197376, Russia
| | - Olga N Pozharitskaya
- Murmansk Marine Biological Institute of the Russian Academy of Sciences, Vladimirskaya, 17, Murmansk, 183010, Russia
| | - Elena V Flisyuk
- Saint-Petersburg State Chemical Pharmaceutical University, Prof. Popov, 14, Saint-Petersburg, 197376, Russia
| | - Meifeng Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hongliang Li
- Laboratory of Chinese Herbal Pharmacology, Department of Pharmacy, Renmin Hospital; Hubei Key Laboratory of Wudang Local Chinese Medicine Research; Biomedical Research Institute; School of Pharmaceutical Sciences and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, South Renmin Road, Shiyan, 442000, China
| | - Liliana Vargas-Murga
- BIOTHANI, Can Lleganya, 17451 Sant Feliu de Buixalleu, Catalonia, Spain; Department of Chemical and Agricultural Engineering and Agrifood Technology, University of Girona (UdG), 17003 Girona, Catalonia, Spain
| | - Pierre Duez
- Unit of Therapeutic Chemistry and Pharmacognosy, University of Mons (UMONS), 7000 Mons, Belgium..
| |
Collapse
|
13
|
Wu Q, Chen Z, Ding Y, Tang Y, Cheng Y. Protective effect of traditional Chinese medicine on non-alcoholic fatty liver disease and liver cancer by targeting ferroptosis. Front Nutr 2022; 9:1033129. [PMID: 36330148 PMCID: PMC9623008 DOI: 10.3389/fnut.2022.1033129] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease with high incidence and is closely related to metabolic syndrome. If not controlled, it may eventually become hepatocellular carcinoma (HCC). Ferroptosis, a non-apoptotic form of programmed cell death (PCD), is closely related to NAFLD and HCC, and the mechanisms of action involved are more complex. Some studies have demonstrated that many drugs inhibit ferroptosis and protect liver steatosis or carcinogenesis. The role of Traditional Chinese Medicine (TCM), especially herbs or herbal extracts, has received increasing attention. However, there are relatively few review articles on the regulation of NAFLD by TCM through ferroptosis pathway. Here, we summarize the TCM intervention mechanism and application affecting NAFLD/NAFLD-HCC via regulation of ferroptosis. This article focuses on the relationship between ferroptosis and NAFLD or NAFLD-HCC and the protective effect of TCM on both by targeting ferroptosis. It not only summarizes the mechanism of early prevention and treatment of NAFLD, but also provides reference ideas for the development of TCM for the treatment of metabolic diseases and liver diseases.
Collapse
Affiliation(s)
- Qiongbo Wu
- Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, China
- Hainan Clinical Research Center for Preventive Treatment of Diseases, Haikou, China
- Food Science and Technology Center, National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Zihao Chen
- Food Science and Technology Center, National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Yi Ding
- Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, China
- Hainan Clinical Research Center for Preventive Treatment of Diseases, Haikou, China
| | - Yunting Tang
- Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, China
- Hainan Clinical Research Center for Preventive Treatment of Diseases, Haikou, China
| | - Yawei Cheng
- Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, China
- Hainan Clinical Research Center for Preventive Treatment of Diseases, Haikou, China
- *Correspondence: Yawei Cheng,
| |
Collapse
|
14
|
Jiang JJ, Zhang GF, Zheng JY, Sun JH, Ding SB. Targeting Mitochondrial ROS-Mediated Ferroptosis by Quercetin Alleviates High-Fat Diet-Induced Hepatic Lipotoxicity. Front Pharmacol 2022; 13:876550. [PMID: 35496312 PMCID: PMC9039018 DOI: 10.3389/fphar.2022.876550] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/24/2022] [Indexed: 12/31/2022] Open
Abstract
Background: The protective effect of quercetin on nonalcoholic fatty liver disease (NAFLD) has been reported, but its mechanism remains poorly understood. Recently, quercetin was reported to be capable of inhibiting ferroptosis, which is a recognized type of regulated cell death. Moreover, hepatic ferroptosis plays an important role in the progression of NAFLD, but experimental evidence is limited. Hence, our study aimed to investigate the effect of quercetin on hepatic ferroptosis in high-fat diet (HFD)-induced NAFLD and further elucidate the underlying molecular mechanism. Methods: C57BL/6J mice were fed either a normal diet (ND), an HFD, or an HFD supplemented with quercetin for 12 weeks. Hepatic lipid peroxidation, steatosis, ferroptosis and iron overload were examined. In vitro, steatotic L-02 cells was used to study the potential mechanism. Results: We found that the HFD caused lipid peroxidation, lipid accumulation and ferroptosis in the liver, which were rescued by quercetin supplementation. Consistent with the in vivo results, quercetin alleviated lipid droplet accumulation and reduced the levels of lipid reactive oxygen species (ROS) and ferroptosis in steatotic L-02 cells. Using a mitochondrial ROS (MtROS) scavenger (Mito-TEMPO) and ferroptosis specific inhibitor (Fer-1), we found that quercetin remarkably alleviated lipid droplet accumulation and lipid peroxidation by reducing MtROS-mediated ferroptosis in steatotic L-02 cells. Conclusion: Our data showed that HFD consumption induced lipid accumulation and triggered ferroptosis in liver, ultimately leading to hepatic lipotoxicity, which can be alleviated by quercetin. Findings from this study provide new insight into the mechanism by which quercetin can be used for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Jin-Jin Jiang
- Jiangsu Vocational College of Medicine, Yancheng, China
| | - Guo-Fu Zhang
- Department of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Jia-Yi Zheng
- Jiangsu Vocational College of Medicine, Yancheng, China
| | - Ji-Hu Sun
- Jiangsu Vocational College of Medicine, Yancheng, China
- *Correspondence: Shi-Bin Ding, ; Ji-Hu Sun,
| | - Shi-Bin Ding
- Jiangsu Vocational College of Medicine, Yancheng, China
- *Correspondence: Shi-Bin Ding, ; Ji-Hu Sun,
| |
Collapse
|
15
|
Su WL, Chan CY, Cheng CF, Shui HA, Ku HC. Erythrocyte degradation, metabolism, secretion, and communication with immune cells in the blood during sepsis: A review. Tzu Chi Med J 2022; 34:125-133. [PMID: 35465286 PMCID: PMC9020243 DOI: 10.4103/tcmj.tcmj_58_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/22/2021] [Accepted: 05/26/2021] [Indexed: 11/04/2022] Open
Abstract
Sepsis is a health issue that affects millions of people worldwide. It was assumed that erythrocytes were affected by sepsis. However, in recent years, a number of studies have shown that erythrocytes affect sepsis as well. When a pathogen invades the human body, it infects the blood and organs, causing infection and sepsis-related symptoms. Pathogens change the internal environment, increasing the levels of reactive oxygen species, influencing erythrocyte morphology, and causing erythrocyte death, i.e., eryptosis. Characteristics of eryptosis include cell shrinkage, membrane blebbing, and surface exposure of phosphatidylserine (PS). Eryptotic erythrocytes increase immune cell proliferation, and through PS, attract macrophages that remove the infected erythrocytes. Erythrocyte-degraded hemoglobin derivatives and heme deteriorate infection; however, they could also be metabolized to a series of derivatives. The result that erythrocytes play an anti-infection role during sepsis provides new perspectives for treatment. This review focuses on erythrocytes during pathogenic infection and sepsis.
Collapse
|
16
|
Sotiropoulou M, Katsaros I, Vailas M, Lidoriki I, Papatheodoridis GV, Kostomitsopoulos NG, Valsami G, Tsaroucha A, Schizas D. Nonalcoholic fatty liver disease: The role of quercetin and its therapeutic implications. Saudi J Gastroenterol 2021; 27:319-330. [PMID: 34810376 PMCID: PMC8656328 DOI: 10.4103/sjg.sjg_249_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/29/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease, affecting almost one-third of the general population and 75% of obese patients with type 2 diabetes. The aim of this article is to review the current evidence concerning the role of quercetin, a natural compound and flavonoid, and its possible therapeutic effects on this modern-day disease. Despite the fact that the exact pathophysiological mechanisms through which quercetin has a hepatoprotective effect on NAFLD are still not fully elucidated, this review clearly demonstrates that this flavonoid has potent antioxidative stress action and inhibitory effects on hepatocyte apoptosis, inflammation, and generation of reactive oxygen species, factors which are linked to the development of the disease. NAFLD is closely associated with increased dietary fat consumption, especially in Western countries. The hepatoprotective effect of quercetin against NAFLD merits serious consideration and further validation by future studies.
Collapse
Affiliation(s)
- Maria Sotiropoulou
- Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Ioannis Katsaros
- Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Michail Vailas
- Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Irene Lidoriki
- Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - George V Papatheodoridis
- Department of Gastroenterology, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Nikolaos G Kostomitsopoulos
- Center of Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Georgia Valsami
- Department of Pharmacy, Laboratory of Biopharmaceutics-Pharmacokinetics, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandra Tsaroucha
- Laboratory of Experimental Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Dimitrios Schizas
- Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| |
Collapse
|
17
|
Stephen Robert J, Peddha MS, Srivastava AK. Effect of Silymarin and Quercetin in a Miniaturized Scaffold in Wistar Rats against Non-alcoholic Fatty Liver Disease. ACS OMEGA 2021; 6:20735-20745. [PMID: 34423182 PMCID: PMC8374897 DOI: 10.1021/acsomega.1c00555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 07/26/2021] [Indexed: 05/02/2023]
Abstract
Silymarin and quercetin (SQ) are known antioxidants with substantial free radical scavenging activities. The efficacy of SQ activity is restricted due to poor absorption and availability. This study aims to increase the hepatoprotective activity of SQ by a newer delivery technique. We have optimized a technique, miniaturized scaffold (MS), for the delivery of active compounds of SQ. SQ molecules were embedded in MS and characterized by morphology, particle size, miniaturization efficiency, and functional group. Further, the hepatoprotective effects of MSQ were investigated through in vitro and in vivo methods. Hepatotoxicity was induced in rats by carbon tetrachloride (CCl4), and subsequently, hepatotoxic rats were treated with the miniaturized scaffold of SQ (MSQ) for 8 weeks. The body weight were significantly high in groups fed with MSQ. A substantial decrease in triglyceride, total cholesterol, low-density lipoprotein, alanine aminotransferase, and aspartate aminotransferase activities were observed in rats treated with MSQ. Similarly, rats treated with MSQ exhibited lower lipid accumulation in the hepatocytes. The experiments clearly demonstrated the efficacy of MSQ as a superior hepatoprotective agent against non-alcoholic fatty liver disease simulated through toxicity induced by CCl4.
Collapse
Affiliation(s)
- Jaisheela
Marry Stephen Robert
- Department
of Food Safety and Analytical Quality Control Laboratory, CSIR- Central Food Technological Research Institute, Mysuru, Karnataka 570 020, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Muthukumar Serva Peddha
- Department
of Biochemistry, CSIR- Central Food Technological
Research Institute, Mysuru, 570 020 Karnataka, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Alok Kumar Srivastava
- Department
of Food Safety and Analytical Quality Control Laboratory, CSIR- Central Food Technological Research Institute, Mysuru, Karnataka 570 020, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- .
Phone: 91-821-2514972. Fax: 91-821-2517233
| |
Collapse
|
18
|
Komolafe O, Buzzetti E, Linden A, Best LM, Madden AM, Roberts D, Chase TJ, Fritche D, Freeman SC, Cooper NJ, Sutton AJ, Milne EJ, Wright K, Pavlov CS, Davidson BR, Tsochatzis E, Gurusamy KS. Nutritional supplementation for nonalcohol-related fatty liver disease: a network meta-analysis. Cochrane Database Syst Rev 2021; 7:CD013157. [PMID: 34280304 PMCID: PMC8406904 DOI: 10.1002/14651858.cd013157.pub2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND The prevalence of non-alcohol-related fatty liver disease (NAFLD) varies between 19% and 33% in different populations. NAFLD decreases life expectancy and increases risks of liver cirrhosis, hepatocellular carcinoma, and the requirement for liver transplantation. Uncertainty surrounds relative benefits and harms of various nutritional supplements in NAFLD. Currently no nutritional supplement is recommended for people with NAFLD. OBJECTIVES • To assess the benefits and harms of different nutritional supplements for treatment of NAFLD through a network meta-analysis • To generate rankings of different nutritional supplements according to their safety and efficacy SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials, MEDLINE, Embase, Science Citation Index Expanded, Conference Proceedings Citation Index-Science, the World Health Organization International Clinical Trials Registry Platform, and trials registers until February 2021 to identify randomised clinical trials in people with NAFLD. SELECTION CRITERIA We included only randomised clinical trials (irrespective of language, blinding, or status) for people with NAFLD, irrespective of method of diagnosis, age and diabetic status of participants, or presence of non-alcoholic steatohepatitis (NASH). We excluded randomised clinical trials in which participants had previously undergone liver transplantation. DATA COLLECTION AND ANALYSIS We performed a network meta-analysis with OpenBUGS using Bayesian methods whenever possible and calculated differences in treatments using hazard ratios (HRs), odds ratios (ORs), and rate ratios with 95% credible intervals (CrIs) based on an available-case analysis, according to National Institute of Health and Care Excellence Decision Support Unit guidance. MAIN RESULTS We included in the review a total of 202 randomised clinical trials (14,200 participants). Nineteen trials were at low risk of bias. A total of 32 different interventions were compared in these trials. A total of 115 trials (7732 participants) were included in one or more comparisons. The remaining trials did not report any of the outcomes of interest for this review. Follow-up ranged from 1 month to 28 months. The follow-up period in trials that reported clinical outcomes was 2 months to 28 months. During this follow-up period, clinical events related to NAFLD such as mortality, liver cirrhosis, liver decompensation, liver transplantation, hepatocellular carcinoma, and liver-related mortality were sparse. We did not calculate effect estimates for mortality because of sparse data (zero events for at least one of the groups in the trial). None of the trials reported that they measured overall health-related quality of life using a validated scale. The evidence is very uncertain about effects of interventions on serious adverse events (number of people or number of events). We are very uncertain about effects on adverse events of most of the supplements that we investigated, as the evidence is of very low certainty. However, people taking PUFA (polyunsaturated fatty acid) may be more likely to experience an adverse event than those not receiving an active intervention (network meta-analysis results: OR 4.44, 95% CrI 2.40 to 8.48; low-certainty evidence; 4 trials, 203 participants; direct evidence: OR 4.43, 95% CrI 2.43 to 8.42). People who take other supplements (a category that includes nutritional supplements other than vitamins, fatty acids, phospholipids, and antioxidants) had higher numbers of adverse events than those not receiving an active intervention (network meta-analysis: rate ratio 1.73, 95% CrI 1.26 to 2.41; 6 trials, 291 participants; direct evidence: rate ratio 1.72, 95% CrI 1.25 to 2.40; low-certainty evidence). Data were sparse (zero events in all groups in the trial) for liver transplantation, liver decompensation, and hepatocellular carcinoma. So, we did not perform formal analysis for these outcomes. The evidence is very uncertain about effects of other antioxidants (antioxidants other than vitamins) compared to no active intervention on liver cirrhosis (HR 1.68, 95% CrI 0.23 to 15.10; 1 trial, 99 participants; very low-certainty evidence). The evidence is very uncertain about effects of interventions in any of the remaining comparisons, or data were sparse (with zero events in at least one of the groups), precluding formal calculations of effect estimates. Data were probably because of the very short follow-up period (2 months to 28 months). It takes follow-up of 8 to 28 years to detect differences in mortality between people with NAFLD and the general population. Therefore, it is unlikely that differences in clinical outcomes are noted in trials providing less than 5 to 10 years of follow-up. AUTHORS' CONCLUSIONS The evidence indicates considerable uncertainty about effects of nutritional supplementation compared to no additional intervention on all clinical outcomes for people with non-alcohol-related fatty liver disease. Accordingly, high-quality randomised comparative clinical trials with adequate follow-up are needed. We propose registry-based randomised clinical trials or cohort multiple randomised clinical trials (study design in which multiple interventions are trialed within large longitudinal cohorts of patients to gain efficiencies and align trials more closely to standard clinical practice) comparing interventions such as vitamin E, prebiotics/probiotics/synbiotics, PUFAs, and no nutritional supplementation. The reason for the choice of interventions is the impact of these interventions on indirect outcomes, which may translate to clinical benefit. Outcomes in such trials should be mortality, health-related quality of life, decompensated liver cirrhosis, liver transplantation, and resource utilisation measures including costs of intervention and decreased healthcare utilisation after minimum follow-up of 8 years (to find meaningful differences in clinically important outcomes).
Collapse
Affiliation(s)
| | - Elena Buzzetti
- Sheila Sherlock Liver Centre, Royal Free Hospital and the UCL Institute of Liver and Digestive Health, London, UK
| | - Audrey Linden
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Lawrence Mj Best
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Angela M Madden
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Danielle Roberts
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Thomas Jg Chase
- Department of General Surgery, Homerton University Hospital NHS Foundation Trust, London, UK
| | | | - Suzanne C Freeman
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Nicola J Cooper
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Alex J Sutton
- Department of Health Sciences, University of Leicester, Leicester, UK
| | | | - Kathy Wright
- Cochrane Hepato-Biliary Group, Copenhagen Trial Unit, Centre for Clinical Intervention Research, The Capital Region of Denmark, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Chavdar S Pavlov
- Department of Therapy, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Brian R Davidson
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Emmanuel Tsochatzis
- Sheila Sherlock Liver Centre, Royal Free Hospital and the UCL Institute of Liver and Digestive Health, London, UK
| | - Kurinchi Selvan Gurusamy
- Division of Surgery and Interventional Science, University College London, London, UK
- Department of Therapy, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| |
Collapse
|
19
|
The Therapeutic Effects and Mechanisms of Quercetin on Metabolic Diseases: Pharmacological Data and Clinical Evidence. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6678662. [PMID: 34257817 PMCID: PMC8249127 DOI: 10.1155/2021/6678662] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/17/2021] [Accepted: 06/08/2021] [Indexed: 12/27/2022]
Abstract
Metabolic diseases have become major public health issues worldwide. Searching for effective drugs for treating metabolic diseases from natural compounds has attracted increasing attention. Quercetin, an important natural flavonoid, is extensively present in fruits, vegetables, and medicinal plants. Due to its potentially beneficial effects on human health, quercetin has become the focus of medicinal attention. In this review, we provide a timely and comprehensive summary of the pharmacological advances and clinical data of quercetin in the treatment of three metabolic diseases, including diabetes, hyperlipidemia, and nonalcoholic fatty liver disease (NAFLD). Accumulating evidences obtained from animal experiments prove that quercetin has beneficial effects on these three diseases. It can promote insulin secretion, improve insulin resistance, lower blood lipid levels, inhibit inflammation and oxidative stress, alleviate hepatic lipid accumulation, and regulate gut microbiota disorders in animal models. However, human clinical studies on the effects of quercetin in diabetes, hyperlipidemia, and NAFLD remain scarce. More clinical trials with larger sample sizes and longer trial durations are needed to verify its true effectiveness in human subjects. Moreover, another important issue that needs to be resolved in future research is to improve the bioavailability of quercetin. This review may provide valuable information for the basic research, drug development, and clinical application of quercetin in the treatment of metabolic diseases.
Collapse
|
20
|
Quercetin and non-alcoholic fatty liver disease: A review based on experimental data and bioinformatic analysis. Food Chem Toxicol 2021; 154:112314. [PMID: 34087406 DOI: 10.1016/j.fct.2021.112314] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/18/2021] [Accepted: 05/29/2021] [Indexed: 02/08/2023]
Abstract
Quercetin, a polyphenol widely present in the plant kingdom, has received great interest due to pleiotropic effects. As evidenced by animal and cellular studies, quercetin exerts hepatoprotection against non-alcoholic fatty liver disease (NAFLD), particularly in hepatic steatosis and hepatitis. Mechanically, various hypotheses of such protective effects have been actively proposed, including improving fatty acid metabolism, anti-inflammation, anti-oxidant, modulating gut microbiota and bile acid, etc. Here, the role of quercetin in NAFLD was summarized. With a particular focus on molecular mechanism, we comprehensively discussed the pathways of quercetin on NAFLD based on the analysis from Gene Expression Omnibus (GEO) database and experimental evidence.
Collapse
|
21
|
Zhou H, Ma C, Wang C, Gong L, Zhang Y, Li Y. Research progress in use of traditional Chinese medicine monomer for treatment of non-alcoholic fatty liver disease. Eur J Pharmacol 2021; 898:173976. [PMID: 33639194 DOI: 10.1016/j.ejphar.2021.173976] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023]
Abstract
With the improvement of people's living standards and the change of eating habits, non-alcoholic fatty liver disease (NAFLD) has gradually become one of the most common chronic liver diseases in the world. However, there are no effective drugs for the treatment of NAFLD. Therefore, it is urgent to find safe, efficient, and economical anti-NAFLD drugs. Compared with western medicines that possess fast lipid-lowering effect, traditional Chinese medicines (TCM) have attracted increasing attention for the treatment of NAFLD due to their unique advantages such as multi-targets and multi-channel mechanisms of action. TCM monomers have been proved to treat NAFLD through regulating various pathways, including inflammation, lipid production, insulin sensitivity, mitochondrial dysfunction, autophagy, and intestinal microbiota. In particular, peroxisome proliferator-activated receptor α (PPAR-α), sterol regulatory element-binding protein 1c (SREBP-1c), nuclear transcription factor kappa (NF-κB), phosphoinositide 3-kinase (PI3K), sirtuin1 (SIRT1), AMP-activated protein kinase (AMPK), p53 and nuclear factor erythroid 2-related factor 2 (Nrf2) are considered as important molecular targets for ameliorating NAFLD by TCM monomers. Therefore, by searching PubMed, Web of Science and SciFinder databases, this paper updates and summarizes the experimental and clinical evidence of TCM monomers for the treatment of NAFLD in the past six years (2015-2020), thus providing thoughts and prospects for further exploring the pathogenesis of NAFLD and TCM monomer therapies.
Collapse
Affiliation(s)
- Honglin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yafang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
22
|
Hu Q, Wei S, Wen J, Zhang W, Jiang Y, Qu C, Xiang J, Zhao Y, Peng X, Ma X. Network pharmacology reveals the multiple mechanisms of Xiaochaihu decoction in the treatment of non-alcoholic fatty liver disease. BioData Min 2020; 13:11. [PMID: 32863886 PMCID: PMC7450930 DOI: 10.1186/s13040-020-00224-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver (NAFLD) is a chronic disease worldwide, which poses a huge threat to human health. Xiaochaihu decoction is a well-known traditional Chinese medicine prescription. It has been proven effective in treating NAFLD but its mechanism is still unclear. OBJECTIVE Multiple mechanisms of Xiaochaihu decoction are explored by identifying and connecting potential targets and active ingredients in the treatment of NAFLD. METHODS Active ingredients and related targets of seven herbs were collected from TCMSP database. The related targets of NAFLD were obtained from Genes cards database, TDD and OMIM database. The intersected targets of disease targets and drug targets were input into STRING database to construct protein-protein interaction network. DAVID database was used for GO enrichment analysis and KEGG enrichment analysis. RESULTS After screening and removal of duplicates, a total of 145 active ingredients and 105 potential targets were obtained. PPI network manifested that AKT1, IL6, JUN MAPK8 and STAT3 were the key target proteins. The results of GO enrichment analysis mainly involved cytokine receptor binding, cytokine activity, and heme binding. The results of KEGG analysis suggested that the mechanism mainly involved in AGE-RAGE signaling pathway in diabetic complications, Hepatitis C, fluid shear stress and atherosclerosis. The signaling pathways were further integrated as network manner, including AGE-RAGE signaling pathway in diabetic complications, Fluid shear stress and atherosclerosis, Insulin resistance, HIF-1 signaling pathway, Th17 cell differentiation and IL-17 signaling pathway. The network contained immunity regulation, metabolism regulation and oxidative stress regulation. CONCLUSION Xiaochaihu decoction plays a key role in the treatment of NAFLD with multiple targets and pathways. Immunity regulation, metabolism regulation and oxidative stress regulation consist of the crucial regulation cores in mechanism. GRAPHICAL ABSTRACT Design and workflow of this study.
Collapse
Affiliation(s)
- Qichao Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137 China
| | - Shizhang Wei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137 China
- Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, 100039 China
| | - Jianxia Wen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137 China
- Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, 100039 China
| | - Wenwen Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137 China
| | - Yinxiao Jiang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137 China
| | - Caiyan Qu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137 China
| | - Junbao Xiang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137 China
| | - Yanling Zhao
- Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, 100039 China
| | - Xi Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137 China
| | - Xiao Ma
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137 China
| |
Collapse
|