1
|
Wang C, Min R, Zhou Q, Qi Y, Ma Y, Zhang X. Multiple health outcomes associated with algae and its extracts supplementation: An umbrella review of systematic reviews and meta-analyses. Phytother Res 2024; 38:5162-5183. [PMID: 39161296 DOI: 10.1002/ptr.8305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/23/2024] [Accepted: 07/20/2024] [Indexed: 08/21/2024]
Abstract
Algae and its extracts, widely consumed as functional foods, offer numerous health benefits; however, a comprehensive systematic summary of clinical evidence is currently lacking. The study was to assess the available evidence and provide an accurate estimate of the overall effects of algae and its extracts supplementation on various health outcomes. The comprehensive searches in PubMed, Scopus, Embase, Web of Science, and the Cochrane Library until December 22, 2023 were implemented. The random-effects model was employed to pool the overall effect sizes (ESs) and the corresponding 95% confidence intervals (CIs) using Stata software. Moreover, detecting the methodological quality and evidence level of the eligible studies were employed by A Measurement Tool to Assess Systematic Review 2 (AMSTAR2) and the Grading of Recommendations Assessment Development and Evaluation. Ultimately, 25 articles covering 133 health outcomes were included in this umbrella review. The pooled results demonstrated that the algae and its extracts could significantly decrease body weight (ES = -1.65; 95% CI: -1.97, -1.34; p < 0.001), body mass index (BMI) (ES = -0.42; 95% CI: -0.78, -0.07; p = 0.020), waist circumference (WC) (ES = -1.40; 95% CI: -1.40, -1.39; p < 0.001), triglyceride (TG) (ES = -1.38; 95% CI: -2.15, -0.62; p < 0.001), total cholesterol (TC) (ES: -1.40; 95% CI: -2.09, -0.72; p < 0.001), very low-density lipoprotein cholesterol (VLDL-C) (ES = -7.85; 95% CI: -8.55, -7.15; p < 0.001), fasting blood glucose (ES = -2.68; 95% CI: -4.57, -0.79; p = 0.005), glycated hemoglobin (HbA1c) (ES = -0.15; 95% CI: -0.24, -0.07; p < 0.001), systolic blood pressure (ES = -3.21; 95% CI: -5.25, -1.17; p = 0.002), diastolic blood pressure (ES = -3.84; 95% CI: -7.02, -0.65; p = 0.018), alanine transaminase (ES = -0.42; 95% CI: -0.70, -0.14; p = 0.003), and alkaline phosphatase (ES = -0.54; 95% CI: -0.99, -0.10; p = 0.017). Due to the limited number of studies, no benefit was displayed on markers of inflammation and oxidative stress. Considering the suboptimal quality of studies and the insufficient articles pertaining to certain outcomes, further well-designed research is imperative to substantiate the observed findings.
Collapse
Affiliation(s)
- Caixia Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Ruixue Min
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Qilun Zhou
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yue Qi
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yanli Ma
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, China
| | - Xiaofeng Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Chou MY, Ho JH, Huang MJ, Chen YJ, Yang MD, Lin LH, Chi CH, Yeh CH, Tsao TY, Tzeng JK, Hsu RJC, Huang PH, Lu WC, Li PH, Wang MF. Potential antidepressant effects of a dietary supplement from the chlorella and lion's mane mushroom complex in aged SAMP8 mice. Front Nutr 2022; 9:977287. [PMID: 36118772 PMCID: PMC9479623 DOI: 10.3389/fnut.2022.977287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
Since the 1990s, the prevalence of mental illnesses, such as depression, has been increasing annually and has become a major burden on society. Due to the many side effects of antidepressant drugs, the development of a complementary therapy from natural materials is an urgent need. Therefore, this study used a complex extract of chlorella and lion's mane mushroom and evaluated its antidepressant effects. Six-month-old male senescence-accelerated mice prone-8 (SAMP8) were divided into positive control; negative control; and low, medium, and high-dose groups. All groups were treated with corticosterone (CORT) at 40 mg/Kg/day for 21- days to induce depression in the animals, and the effects of different test substances on animal behavior was observed. The positive control group was intraperitoneally injected with a tricyclic antidepressant (Fluoxetine, as tricyclic antidepressant), the control group was given ddH2O, and the test substance groups were administered test samples once daily for 21 days. The open field test (OFT) and forced swimming test (FST) were applied for behavior analyses of depression animal models. The OFT results showed that the mice in the positive control and the medium-, and high-dose groups demonstrated a significantly prolonged duration in the central area and a significantly increased travel distance. In the FST, the positive control and the medium, and high-dose groups displayed significantly reduced immobility times relative to the control group. The blood analysis results showed significant decreases in triglyceride and blood urea nitrogen levels relative to the positive control and the medium- and high-dose groups. Notably, in the positive control and the medium- and high-dose groups, brain-derived neurotrophic factor (BDNF) increase by more than in the control group. In summary, medium and high dose of extract of chlorella and lion's mane mushroom could improve depression behavior in animals and have the potential to be antidepressant health care products.
Collapse
Affiliation(s)
- Ming-Yu Chou
- International Aging Industry Research & Development Center (AIC), Providence University, Taichung, Taiwan
| | - Jou-Hsuan Ho
- Department of Food Science, Tunghai University, Taichung, Taiwan
| | - Mao-Jung Huang
- School of General Education, Hsiuping University of Science and Technology, Taichung, Taiwan
| | - Ying-Ju Chen
- Ph.D. Program in Health and Social Welfare for Indigenous Peoples, Providence University, Taichung, Taiwan
| | - Mei-Due Yang
- Department of Surgery, Department of Clinical Nutrition, China Medical University Hospital, Taichung, Taiwan
| | - Liang-Hung Lin
- Division of Allergy, Immunology & Rheumatology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Ching-Hsin Chi
- International Aging Industry Research & Development Center (AIC), Providence University, Taichung, Taiwan
| | - Chin-Hsi Yeh
- Taiwan Chlorella Manufacturing Co., Ltd., Taipei, Taiwan
| | - Tsui-Ying Tsao
- Taiwan Chlorella Manufacturing Co., Ltd., Taipei, Taiwan
| | - Jian-Kai Tzeng
- Taiwan Chlorella Manufacturing Co., Ltd., Taipei, Taiwan
| | | | - Ping-Hsiu Huang
- College of Food, Jiangsu Food and Pharmaceutical Science College, Huai'an City, China
| | - Wen-Chien Lu
- Department of Food and Beverage Management, Chung-Jen Junior College of Nursing, Health Sciences and Management, Chia-Yi City, Taiwan
| | - Po-Hsien Li
- Department of Food and Nutrition, Providence University, Taichung, Taiwan
- *Correspondence: Po-Hsien Li
| | - Ming-Fu Wang
- International Aging Industry Research & Development Center (AIC), Providence University, Taichung, Taiwan
- Department of Food and Nutrition, Providence University, Taichung, Taiwan
- Ming-Fu Wang
| |
Collapse
|
3
|
Mavrommatis A, Zografaki ME, Marka S, Myrtsi ED, Giamouri E, Christodoulou C, Evergetis E, Iliopoulos V, Koulocheri SD, Moschopoulou G, Simitzis PE, Pappas AC, Flemetakis E, Koutinas A, Haroutounian SA, Tsiplakou E. Effect of a Carotenoid Extract from Citrus reticulata By-Products on the Immune-Oxidative Status of Broilers. Antioxidants (Basel) 2022; 11:antiox11010144. [PMID: 35052648 PMCID: PMC8773417 DOI: 10.3390/antiox11010144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
Although carotenoids generally possess antimicrobial and antioxidant properties, the in vivo synergistic action of carotenoid blends derived from plant-based by-products has not been thoroughly studied. Therefore, the carotenoid characterization and antimicrobial potential of Citrus reticulata extract as well as the impact of this carotenoid-rich extract (CCE) dietary supplementation on the performance, meat quality, and immune-oxidative status of broiler chickens were determined. One hundred and twenty one-day-old hatched chicks (Ross 308) were allocated to two dietary groups, with four replicate pens of 15 birds each. Birds were fed either a basal diet (CON) or the basal diet supplemented with 0.1% CCE (25 mg carotenoid extract included in 1 g of soluble starch) for 42 d. β-Cryptoxanthin, β-Carotene, Zeaxanthin, and Lutein were the prevailing carotenoid compounds in the Citrus reticulata extract. The CCE feed additive exerted inhibitory properties against both Gram-positive (Staphylococcus aureus) and negative (Klebsiella oxytoca, Escherichia coli, and Salmonella typhimurium) bacteria. Both the broiler performance and meat quality did not substantially differ, while the breast muscle malondialdehyde (MDA) concentration tended to decrease (p = 0.070) in the CCE-fed broilers. The inclusion of CCE decreased the alanine aminotransferase and MDA concentration, and the activity of glutathione peroxidase, while the activity of superoxide dismutase was increased in the blood. Catalase and NADPH oxidase 2 relative transcript levels were significantly downregulated in the livers of the CCE-fed broilers. Additionally, Interleukin 1β and tumor necrosis factor (TNF) relative transcript levels were downregulated in the livers of the CCE- fed broilers, while TNF and interferon γ (IFNG) tended to decrease in the spleens and bursa of Fabricius, respectively. The present study provided new insights regarding the beneficial properties of carotenoids contained in Citrus reticulata in broilers’ immune-oxidative status. These promising outcomes could be the basis for further research under field conditions.
Collapse
Affiliation(s)
- Alexandros Mavrommatis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (A.M.); (E.D.M.); (E.G.); (C.C.); (E.E.); (V.I.); (S.D.K.); (A.C.P.); (S.A.H.)
| | - Maria-Eleftheria Zografaki
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (M.-E.Z.); (S.M.); (E.F.)
| | - Sofia Marka
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (M.-E.Z.); (S.M.); (E.F.)
| | - Eleni D. Myrtsi
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (A.M.); (E.D.M.); (E.G.); (C.C.); (E.E.); (V.I.); (S.D.K.); (A.C.P.); (S.A.H.)
| | - Elisavet Giamouri
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (A.M.); (E.D.M.); (E.G.); (C.C.); (E.E.); (V.I.); (S.D.K.); (A.C.P.); (S.A.H.)
| | - Christos Christodoulou
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (A.M.); (E.D.M.); (E.G.); (C.C.); (E.E.); (V.I.); (S.D.K.); (A.C.P.); (S.A.H.)
| | - Epameinondas Evergetis
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (A.M.); (E.D.M.); (E.G.); (C.C.); (E.E.); (V.I.); (S.D.K.); (A.C.P.); (S.A.H.)
| | - Vasilios Iliopoulos
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (A.M.); (E.D.M.); (E.G.); (C.C.); (E.E.); (V.I.); (S.D.K.); (A.C.P.); (S.A.H.)
| | - Sofia D. Koulocheri
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (A.M.); (E.D.M.); (E.G.); (C.C.); (E.E.); (V.I.); (S.D.K.); (A.C.P.); (S.A.H.)
| | - Georgia Moschopoulou
- Laboratory of Cell Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece;
| | - Panagiotis E. Simitzis
- Laboratory of Animal Breeding & Husbandry, Department of Animal Science, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece;
| | - Athanasios C. Pappas
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (A.M.); (E.D.M.); (E.G.); (C.C.); (E.E.); (V.I.); (S.D.K.); (A.C.P.); (S.A.H.)
| | - Emmanouil Flemetakis
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (M.-E.Z.); (S.M.); (E.F.)
| | - Apostolis Koutinas
- Laboratory of Food Process Engineering, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece;
| | - Serkos A. Haroutounian
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (A.M.); (E.D.M.); (E.G.); (C.C.); (E.E.); (V.I.); (S.D.K.); (A.C.P.); (S.A.H.)
| | - Eleni Tsiplakou
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, GR-11855 Athens, Greece; (A.M.); (E.D.M.); (E.G.); (C.C.); (E.E.); (V.I.); (S.D.K.); (A.C.P.); (S.A.H.)
- Correspondence: ; Tel.: +30-2105294435; Fax: +30-2105294413
| |
Collapse
|
4
|
Coelho DFM, Alfaia CMRPM, Assunção JMP, Costa M, Pinto RMA, de Andrade Fontes CMG, Lordelo MM, Prates JAM. Impact of dietary Chlorella vulgaris and carbohydrate-active enzymes incorporation on plasma metabolites and liver lipid composition of broilers. BMC Vet Res 2021; 17:229. [PMID: 34187475 PMCID: PMC8243889 DOI: 10.1186/s12917-021-02932-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Chlorella vulgaris has been proposed as a sustainable green feedstock in poultry nutrition due to its ease of cultivation, minimal environmental impact and balanced nutritional composition. However, the majority of studies documents the use of C. vulgaris as a dietary supplement in broilers instead of a feed ingredient. To the best of our knowledge, no report has shown the effect of a high-level incorporation (>2 % in the diet) of C. vulgaris on plasma metabolites and hepatic lipid composition of broilers. One hundred and twenty Ross 308 male birds were housed in 40 wired-floor cages and randomly distributed by the following experimental diets at 22 days of age (n = 10) during 15 days: (1) a corn-soybean meal based diet (control); (2) based diet with 10% of C. vulgaris; (3) diet 2 supplemented with 0.005% Rovabio® Excel AP; and (4) diet 2 supplemented with 0.01% of a pre-selected four-CAZyme mixture. RESULTS The inclusion of C. vulgaris at 10% in the diet, regardless of the presence of exogenous CAZymes, changed plasma metabolites but did not compromise broilers growth. Plasma total lipids increased in broilers fed C. vulgaris combined with the two feed CAZymes (p < 0.001) compared with the control diet. Moreover, the supplementation with Rovabio® increased total cholesterol and LDL-cholesterol, while the addition of the four-CAZyme mixture increased triacylglycerols, VLDL-cholesterol and ALP activity. In opposition, HDL-cholesterol levels decreased in broilers fed microalga alone (p = 0.002). Regarding hepatic composition, the inclusion of C. vulgaris in broiler diets, individually or combined with exogenous CAZymes, had a minor effect on fatty acids but improved the n-6/n-3 ratio and total carotenoids. CONCLUSIONS In summary, the inclusion of a high level (10%) of C. vulgaris in broiler´s diet, regardless of the presence of exogenous CAZymes, improved hepatic antioxidant composition and did not impair broiler's performance. In addition, the feed supplementation with CAZymes increased broilers lipemia. Therefore, dietary C. vulgaris at this incorporation level seems to be safe for animal health and do not compromise performance traits, with no need of CAZymes supplementation.
Collapse
Affiliation(s)
- Diogo Francisco Maurício Coelho
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | | | - José Miguel Pestana Assunção
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - Mónica Costa
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - Rui Manuel Amaro Pinto
- iMed.UL, Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | | | - Madalena M. Lordelo
- LEAF - Linking Landscape, Environment, Agriculture And Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - José António Mestre Prates
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| |
Collapse
|