1
|
An R, Liu F, Dai N, Li F, Liu X, Cai H, Chen L, Du J. Toxoplasma calcium-dependent protein kinases 3 mediates M1 macrophage polarization by targeting host Arginase-1. Parasit Vectors 2025; 18:181. [PMID: 40394721 DOI: 10.1186/s13071-025-06799-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 04/12/2025] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND Toxoplasma gondii, an obligate intracellular parasite, has developed sophisticated ways to manipulate host immunity, resulting in long-lasting infection and causing serious public health problems in humans and animals. T. gondii type II is the type most frequently associated with human diseases, but the mechanism remains unclear. Toxoplasma calcium-dependent protein kinase 3(CDPK3), a protein located on the T. gondii parasite periphery, is highly expressed in type II strains. Although TgCDPK3 regulates parasite egress from host cells, calcium-based infiltration, and development of tissue cysts, the host target proteins that it modulates are still unclear. METHODS Firstly, mass spectrometry was used to analyze proteins that selectively bind to TgCDPK3. Subsequently, GST (glutathione-s-transferase) pull-down, immunoprecipitation, and immunofluorescence assay were used to confirm the interaction and colocalization between TgCDPK3 and Arginase-1. Western blotting and Argininaseactivity assays were performed to detect the relative levels of endogenous Arginase-1 and inducible nitric oxide synthase (iNOS) in a murine microglial cell line. Fluorescence activated cell sorting (FACS) assays and enzyme-linked immunosorbent assay (ELISA) analysis were performed to confirm the association of interaction between TgCDPK3 and Arginase-1 within an M1/M2-polarized macrophage. Intracellular multiplication assays and plaque assays were performed to test whether the interaction between TgCDPK3 and Arginase-1 affected intercellular parasite growth. RESULTS The interaction between TgCDPK3 and Arginase-1 is functionally correlated and leads to a reduction in Arginase-1 activity, ultimately, contributing to the M1-biased phenotype of the host macrophages, which is related to restraining the proliferation of parasites. CONCLUSIONS Our data showed that CDPK3 mediates M1 macrophage polarization by targeting host Arginase-1, which is beneficial to understanding the mechanism for long term latency establishment of less virulent strains of Toxoplasma.
Collapse
Affiliation(s)
- Ran An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, 230032, China
| | - Fang Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, 230032, China
| | - Niuniu Dai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, 230032, China
| | - Fangmin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, 230032, China
| | - Xingyun Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Haijian Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, 230032, China
| | - Lijian Chen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
| | - Jian Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
2
|
Gorgin Z, Yousefi M, Ghiabi S, Elahinia A, Yousefi H, Aghmyouni ZF, Jahani N, Asgari A, Hamedi E, Rajabi R, Rahmanian P, Hashemi S, Zandieh MA, Majidiani H, Motahari A. Preliminary In silico Analysis of Echinococcus granulosus Calreticulin for Enhanced Vaccine Design against Cystic Echinococcosis. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2025; 19:100-109. [PMID: 40195705 DOI: 10.2174/0127722708309749240821081333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 04/09/2025]
Abstract
BACKGROUND A neglected zoonosis, Cystic Echinococcosis (CE), is most common in developing nations worldwide. Vaccination is, therefore, helpful in preventing this disease. OBJECTIVE Predicting the main biochemical properties of E. granulosus Calreticulin (CRT) and its possible B-cell and T-cell-binding epitopes as a valuable candidate for immunization was the goal of the current study. METHODS Predictions were made to determine biochemical, antigenic, structural, and subcellular characteristics, along with the immunogenic epitopes, using several online servers. RESULTS The extracellular 48.15 KDa protein exhibited no allergenicity, while possessing hydrophilicity (GRAVY: -0.785), stability (instability: 33.88), tolerance to a wide range of temperatures (aliphatic: 62.45), and 59 post-translational modification sites. The secondary structure mostly comprised random coils and extended strands. The 3D model was generated using the Robetta server (confidence: 0.72), and was rehashed and confirmed subsequently. Common B-cell epitopes were discovered by three servers and screened for antigenic, allergenic, and solubility traits. Moreover, MHC-associated epitopes for mice and humans were predicted in E. granulosus CRT with subsequent screening. CONCLUSION This work offers a foundation for further investigation in order to design an effective vaccination against CE. Further empirical research on the examined protein solely or in combination with other antigens is needed.
Collapse
Affiliation(s)
- Zahra Gorgin
- Faculty of Veterinary Medicine, Islamic Azad University, Tehran, Iran
| | - Mahzad Yousefi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Islamic Azad University, Tehran, Iran
| | - Shadan Ghiabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Ali Elahinia
- Resident of Small Animal Internal Medicine, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Hamed Yousefi
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Negar Jahani
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Amirhossein Asgari
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Erfan Hamedi
- Department of Aquatic Animal Health and Diseases, Department of Clinical Sciences, Faculty of Veterinary Medicine Shiraz University, Shiraz, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Saeed Hashemi
- Department of Avian Medicine, Faculty of Veterinary Medicine, University of Shahrekord, Shahr-e Kord, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hamidreza Majidiani
- Healthy Aging Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Alireza Motahari
- Board-certified Veterinary Surgery, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
3
|
Abdizadeh T, Rezaei S, Emadi Z, Sadeghi R, Saffari-Chaleshtori J, Sadeghi M. Investigation of bioremediation for glyphosate and its metabolite in soil using arbuscular mycorrhizal GmHsp60 protein: a molecular docking and molecular dynamics simulations approach. J Biomol Struct Dyn 2024:1-25. [PMID: 39829398 DOI: 10.1080/07391102.2024.2445767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/18/2024] [Indexed: 01/22/2025]
Abstract
The widespread use of glyphosate and the high dependence of the agricultural industry on this herbicide cause environmental pollution and pose a threat to living organisms. One of the appropriate solutions in sustainable agriculture to deal with pollution caused by glyphosate and its metabolites is creating a symbiotic relationship between plants and mycorrhizal fungi. Glomalin-related soil protein is a key protein for the bioremediation of glyphosate and its metabolite aminomethyl phosphonic acid in soil. This study uses homology modeling, molecular docking, and molecular dynamic simulation approaches to investigate the binding mechanism of glomalin-related soil protein from arbuscular mycorrhiza (GmHsp60) with glyphosate and its metabolite and the role of soil protein in the removal and sequestering of common agricultural soil pollutants. GmHsp60 protein structure was predicted by homology modeling, and the quality of the generated model was assessed. Then, the interaction between glyphosate and aminomethyl phosphonic acid and the modeled GmHsp60 protein was explored by molecular docking. Based on docking results, GmHsp60 has an efficient role in the bioremediation of glyphosate and aminomethyl phosphonic acid (-6.03 and -5.34 kcal/mol). Glyphosate forms three hydrogen bonds with Lys258, Gly262, and Glu58 of GmHsp60, and aminomethyl phosphonic acid forms three hydrogen bonds with Lys258, Gly261, and Gly262 of GmHsp60. In addition, the glyphosate's and its metabolite's stability was confirmed by molecular docking simulations and binding free energy calculations using MM/PBSA analysis. This study provides a molecular-level understanding of GmHsp60 expression and function for glyphosate bioremediation.
Collapse
Affiliation(s)
- Tooba Abdizadeh
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Somayeh Rezaei
- Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Emadi
- Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ramin Sadeghi
- Chemical Engineering Department, Iran University of Science & Technology, Narmak, Tehran, Iran
| | - Javad Saffari-Chaleshtori
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehraban Sadeghi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Environmental Health Engineering, School of Health, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
4
|
Majidiani H, Fotovati A. Letter to the editor of Heliyon re: Bioinformatics-based prediction and screening of immunogenic epitopes of Toxoplasma gondii rhoptry proteins 7, 21 and 22 as candidate vaccine target [Heliyon, 9 [7] July 2023, e18176]. Heliyon 2024; 10:e31468. [PMID: 38803971 PMCID: PMC11128519 DOI: 10.1016/j.heliyon.2024.e31468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Affiliation(s)
- Hamidreza Majidiani
- Healthy Aging Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Amir Fotovati
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Hafezi Ahmadi MR, Mamizadeh M, Siamian D, Touyeh MAA, Shams M, Rashidi Y. Immunoinformatic Analysis of Leishmania Major gp46 Protein and Potential Targets for Vaccination against Leishmaniasis. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2024; 18:129-139. [PMID: 38318831 DOI: 10.2174/0127722708283588240124095057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/02/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Cutaneous leishmaniasis (CL) is a parasitic disease with a significant burden in the Old World countries. OBJECTIVE In the current study, some of the primary biochemical properties and IFN-γ inducing epitopes with specific binding capacity to human and mouse MHC alleles were predicted for Leishmania major gp46 antigenic protein. METHODS Several online servers were used to predict physico-chemical traits, allergenicity, antigenicity, transmembrane domain and signal peptide, subcellular localization, post-translational modifications (PTMs), secondary and tertiary structures, tertiary model refining with validations. Also, IEDB web server was used to predict mouse/human cytotoxic T-lymphocyte (CTL) and helper T-lymphocyte (HTL) epitopes. RESULTS The 33.25 kDa protein was stable, hydrophilic, antigenic, while non-allergenic, with enhanced thermotolerance and 45 PTM sites. The secondary structure encompassed a random coil, followed by extended strands and helices. Ramachandran-based analysis of the refined model showed 73.1%, 21.6%, 3.4% and 1.9% of residues in the most favored, additional allowed, generously-allowed and disallowed regions, respectively. Epitope screening demonstrated 4 HTL epitopes against seemingly protective HLA alleles, 5 HTL epitopes against the HLA reference set, 3 human CTL epitopes and a number of mouse MHC-restricted epitopes. CONCLUSION This paper provides insights into the bioinformatics characteristics of the L. major gp46 protein as a promising vaccine candidate.
Collapse
Affiliation(s)
| | - Mina Mamizadeh
- Department of Dermatology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Davood Siamian
- Department of Biology, Faculty of Basic Science, Islamic Azad University, Tonekabon Branch, Mazandaran, Iran
| | - Mehdi Ali Asghari Touyeh
- Department of Cellular and Molecular Biology, Faculty of Basic Science, Sari Branch, Islamic Azad University, Sari, Iran
| | - Morteza Shams
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Yasaman Rashidi
- Veterinary Student, Islamic Azad University, Garmsar Branch, Garmsar, Iran
| |
Collapse
|
6
|
Zhang Y, Li D, Lu S, Zheng B. Toxoplasmosis vaccines: what we have and where to go? NPJ Vaccines 2022; 7:131. [PMID: 36310233 PMCID: PMC9618413 DOI: 10.1038/s41541-022-00563-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Despite recent major advances in developing effective vaccines against toxoplasmosis, finding new protective vaccination strategies remains a challenging and elusive goal as it is critical to prevent the disease. Over the past few years, various experimental approaches have shown that developing an effective vaccine against T. gondii is achievable. However, more remains unknown due to its complicated life cycle, difficulties in clinical translation, and lack of a standardized platform. This minireview summarizes the recent advances in the development of T. gondii vaccines and the main obstacles to developing a safe, effective and durable T. gondii vaccine. The successes and failures in developing and testing vaccine candidates for the T. gondii vaccine are also discussed, which may facilitate the future development of T. gondii vaccines.
Collapse
Affiliation(s)
- Yizhuo Zhang
- grid.506977.a0000 0004 1757 7957Institute of Parasitic Diseases, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China ,grid.506977.a0000 0004 1757 7957Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Dan Li
- grid.506977.a0000 0004 1757 7957Institute of Parasitic Diseases, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China ,grid.506977.a0000 0004 1757 7957Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Shaohong Lu
- grid.506977.a0000 0004 1757 7957Institute of Parasitic Diseases, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China ,grid.506977.a0000 0004 1757 7957Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China ,grid.506977.a0000 0004 1757 7957Key Laboratory of Bio-tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Bin Zheng
- grid.506977.a0000 0004 1757 7957Institute of Parasitic Diseases, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China ,grid.506977.a0000 0004 1757 7957Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China ,grid.506977.a0000 0004 1757 7957Key Laboratory of Bio-tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
7
|
Liu F, Wu M, Wang J, Wen H, An R, Cai H, Yu L, Shen J, Chen L, Du J. Protective Effect Against Toxoplasmosis in BALB/c Mice Vaccinated With Recombinant Toxoplasma gondii MIF, CDPK3, and 14-3-3 Protein Cocktail Vaccine. Front Immunol 2021; 12:755792. [PMID: 35003067 PMCID: PMC8727341 DOI: 10.3389/fimmu.2021.755792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022] Open
Abstract
Toxoplasma gondii can infect almost all endotherm organisms including humans and cause life-threatening toxoplasmosis in immunocompromised individuals, which leads to serious public health problems. Developing an excellent vaccine against this disease is impending. In present study, we formulated a cocktail protein vaccine including the TgMIF, TgCDPK3, and Tg14-3-3 proteins, which play critical roles in T. gondii infection. The recombinant protein vaccines were constructed and assessed by vaccination in BALB/c mice. We organized the mice in various protein combination groups of vaccines, and all mice were immunized with corresponding proteins at 0, 2, and 4 weeks. The specific protective effects of the vaccines on mice against T. gondii were analyzed by the mensuration of cytokines, serum antibodies, splenocyte proliferation assay, survival time, and parasite cyst burden of mice after the challenge. The study indicated that mice immunized with all three multicomponent proteins vaccine triggered a strong immune response with highest levels of IFN-γ production and IgG antibody compared with the other two protein combinations and controls. Moreover, there was an increase in IL-4 production and antigen-specific lymphocyte proliferation. The parasite cysts were significantly reduced (resulting in an 82.7% reduction), and survival time was longer in immunized mice with three multicomponent proteins compared with the other groups of mice. The enhanced humoral and cell-mediated immunity indicated that the protein cocktail vaccine containing three antigens provided effective protection for mice. These results indicated that recombinant TgMIF, TgCDPK3, and Tg14-3-3 multicomponent proteins were potential candidates for vaccine against toxoplasmosis.
Collapse
Affiliation(s)
- Fang Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Minmin Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Jie Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Hongyang Wen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Ran An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Haijian Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Li Yu
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Jilong Shen
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
| | - Lijian Chen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Lijian Chen, ; Jian Du, ;
| | - Jian Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Research Center for Infectious Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The Provincial Key Laboratory of Zoonoses of High Institutions of Anhui, Anhui Medical University, Hefei, China
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, Anhui Medical University, Hefei, China
- *Correspondence: Lijian Chen, ; Jian Du, ;
| |
Collapse
|
8
|
Toxoplasma gondii Tyrosine-Rich Oocyst Wall Protein: A Closer Look through an In Silico Prism. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1315618. [PMID: 34692826 PMCID: PMC8531782 DOI: 10.1155/2021/1315618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/02/2021] [Indexed: 12/18/2022]
Abstract
Toxoplasmosis is a global threat with significant zoonotic concern. The present in silico study was aimed at determination of bioinformatics features and immunogenic epitopes of a tyrosine-rich oocyst wall protein (TrOWP) of Toxoplasma gondii. After retrieving the amino acid sequence from UniProt database, several parameters were predicted including antigenicity, allergenicity, solubility and physico-chemical features, signal peptide, transmembrane domain, and posttranslational modifications. Following secondary and tertiary structure prediction, the 3D model was refined, and immunogenic epitopes were forecasted. It was a 25.57 kDa hydrophilic molecule with 236 residues, a signal peptide, and significant antigenicity scores. Moreover, several linear and conformational B-cell epitopes were present. Also, potential mouse and human cytotoxic T-lymphocyte (CTL) and helper T-lymphocyte (HTL) epitopes were predicted in the sequence. The findings of the present in silico study are promising as they render beneficial characteristics of TrOWP to be included in future vaccination experiments.
Collapse
|
9
|
Taghipour A, Tavakoli S, Sabaghan M, Foroutan M, Majidiani H, Soltani S, Badri M, Ghaffari AD, Soltani S. Immunoinformatic Analysis of Calcium-Dependent Protein Kinase 7 (CDPK7) Showed Potential Targets for Toxoplasma gondii Vaccine. J Parasitol Res 2021; 2021:9974509. [PMID: 34336254 PMCID: PMC8295510 DOI: 10.1155/2021/9974509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 12/02/2022] Open
Abstract
Apicomplexan parasites, including Toxoplasma gondii (T. gondii), express different types of calcium-dependent protein kinases (CDPKs), which perform a variety of functions, including attacking and exiting the host cells. In the current bioinformatics study, we have used several web servers to predict the basic features and specifications of the CDPK7 protein. The findings showed that CDPK7 protein has 2133 amino acid residues with an average molecular weight (MW) of 219085.79 D. The aliphatic index with 68.78 and grand average of hydropathicity (GRAVY) with -0.331 score were estimated. The outcomes of current research showed that the CDPK7 protein included 502 alpha-helix, 1311 random coils, and 320 extended strands with GOR4 method. Considering the Ramachandran plot, the favored region contains more than 92% of the amino acid residues. In addition, evaluation of antigenicity and allergenicity showed that CDPK7 protein has immunogenic and nonallergenic nature. The present research provides key data for more animal-model study on the CDPK7 protein to design an efficient vaccine against toxoplasmosis in the future.
Collapse
Affiliation(s)
- Ali Taghipour
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sanaz Tavakoli
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Masoud Foroutan
- USERN Office, Abadan University of Medical Sciences, Abadan, Iran
| | - Hamidreza Majidiani
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Shahrzad Soltani
- USERN Office, Abadan University of Medical Sciences, Abadan, Iran
| | - Milad Badri
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ali Dalir Ghaffari
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sheyda Soltani
- USERN Office, Abadan University of Medical Sciences, Abadan, Iran
| |
Collapse
|
10
|
Rashidi S, Tuteja R, Mansouri R, Ali-Hassanzadeh M, Shafiei R, Ghani E, Karimazar M, Nguewa P, Manzano-Román R. The main post-translational modifications and related regulatory pathways in the malaria parasite Plasmodium falciparum: An update. J Proteomics 2021; 245:104279. [PMID: 34089893 DOI: 10.1016/j.jprot.2021.104279] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/18/2021] [Accepted: 05/27/2021] [Indexed: 12/14/2022]
Abstract
There are important challenges when investigating individual post-translational modifications (PTMs) or protein interaction network and delineating if PTMs or their changes and cross-talks are involved during infection, disease initiation or as a result of disease progression. Proteomics and in silico approaches now offer the possibility to complement each other to further understand the regulatory involvement of these modifications in parasites and infection biology. Accordingly, the current review highlights key expressed or altered proteins and PTMs are invisible switches that turn on and off the function of most of the proteins. PTMs include phosphorylation, glycosylation, ubiquitylation, palmitoylation, myristoylation, prenylation, acetylation, methylation, and epigenetic PTMs in P. falciparum which have been recently identified. But also other low-abundant or overlooked PTMs that might be important for the parasite's survival, infectivity, antigenicity, immunomodulation and pathogenesis. We here emphasize the PTMs as regulatory pathways playing major roles in the biology, pathogenicity, metabolic pathways, survival, host-parasite interactions and the life cycle of P. falciparum. Further validations and functional characterizations of such proteins might confirm the discovery of therapeutic targets and might most likely provide valuable data for the treatment of P. falciparum, the main cause of severe malaria in human.
Collapse
Affiliation(s)
- Sajad Rashidi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Renu Tuteja
- Parasite Biology Group, ICGEB, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Reza Mansouri
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Mohammad Ali-Hassanzadeh
- Department of Immunology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Reza Shafiei
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Esmaeel Ghani
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mohammadreza Karimazar
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Paul Nguewa
- University of Navarra, ISTUN Instituto de Salud Tropical, Department of Microbiology and Parasitology, IdiSNA (Navarra Institute for Health Research), c/Irunlarrea 1, 31008 Pamplona, Spain.
| | - Raúl Manzano-Román
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain.
| |
Collapse
|
11
|
Foroutan M, Ghaffari AD, Soltani S, Majidiani H, Taghipour A, Sabaghan M. Bioinformatics analysis of calcium-dependent protein kinase 4 (CDPK4) as Toxoplasma gondii vaccine target. BMC Res Notes 2021; 14:50. [PMID: 33549149 PMCID: PMC7865105 DOI: 10.1186/s13104-021-05467-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/28/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Toxoplasma gondii (T. gondii), an obligate intracellular apicomplexan parasite, could affect numerous warm-blooded animals, such as humans. Calcium-dependent protein kinases (CDPKs) are essential Ca2+ signaling mediators and participate in parasite host cell egress, outer membrane motility, invasion, and cell division. RESULTS Several bioinformatics online servers were employed to analyze and predict the important properties of CDPK4 protein. The findings revealed that CDPK4 peptide has 1158 amino acid residues with average molecular weight (MW) of 126.331 KDa. The aliphatic index and GRAVY for this protein were estimated at 66.82 and - 0.650, respectively. The findings revealed that the CDPK4 protein comprised 30.14% and 34.97% alpha-helix, 59.84% and 53.54% random coils, and 10.02% and 11.49% extended strand with SOPMA and GOR4 tools, respectively. Ramachandran plot output showed 87.87%, 8.40%, and 3.73% of amino acid residues in the favored, allowed, and outlier regions, respectively. Also, several potential B and T-cell epitopes were predicted for CDPK4 protein through different bioinformatics tools. Also, antigenicity and allergenicity evaluation demonstrated that this protein has immunogenic and non-allergenic nature. This paper presents a basis for further studies, thereby provides a fundamental basis for the development of an effective vaccine against T. gondii infection.
Collapse
Affiliation(s)
- Masoud Foroutan
- USERN Office, Abadan Faculty of Medical Sciences, Abadan, Iran
| | - Ali Dalir Ghaffari
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, P. O. Box 14115-111, Tehran, Iran.
| | | | - Hamidreza Majidiani
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran.
| | - Ali Taghipour
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, P. O. Box 14115-111, Tehran, Iran
| | | |
Collapse
|
12
|
Ghaffari AD, Dalimi A, Ghaffarifar F, Pirestani M, Majidiani H. Immunoinformatic analysis of immunogenic B- and T-cell epitopes of MIC4 protein to designing a vaccine candidate against Toxoplasma gondii through an in-silico approach. Clin Exp Vaccine Res 2021; 10:59-77. [PMID: 33628756 PMCID: PMC7892946 DOI: 10.7774/cevr.2021.10.1.59] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/25/2021] [Indexed: 12/21/2022] Open
Abstract
Purpose Toxoplasmosis, transmitted by Toxoplasma gondii, is a worldwide parasitic disease that affects approximately one-third of the world's inhabitants. Today, there are no appropriate drugs to deter tissue cysts from developing in infected hosts. So, developing an effective vaccine would be valuable to avoid from toxoplasmosis. Considering the role of microneme antigens such as microneme protein 4 (MIC4) in T. gondii pathogenesis, it can be used as potential candidates for vaccine against T. gondii. Materials and Methods In this study several bioinformatics methods were used to assess the different aspects of MIC4 protein such as secondary and tertiary structure, physicochemical characteristics, the transmembrane domains, subcellular localization, B-cell, helper-T lymphocyte, cytotoxic-T lymphocyte epitopes, and other notable characteristic of this protein design a suitable vaccine against T. gondii. Results The studies revealed that MIC4 protein includes 59 potential post-translational modification sites without any transmembrane domains. Moreover, several probable epitopes of B- and T-cells were detected for MIC4. The secondary structure comprised 55.69% random coil, 5.86% beta-turn, 19.31% extended strand, and 19.14% alpha helix. According to the Ramachandran plot results, 87.42% of the amino acid residues were located in the favored, 9.44% in allowed, and 3.14% in outlier regions. The protein allergenicity and antigenicity revealed that it was non-allergenic and antigenic. Conclusion This study gives vital basic on MIC4 protein for further research and also established an effective vaccine with different techniques against acute and chronic toxoplasmosis.
Collapse
Affiliation(s)
- Ali Dalir Ghaffari
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abdolhossein Dalimi
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Ghaffarifar
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Pirestani
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamidreza Majidiani
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
13
|
Shams M, Nourmohammadi H, Basati G, Adhami G, Majidiani H, Azizi E. Leishmanolysin gp63: Bioinformatics evidences of immunogenic epitopes in Leishmania major for enhanced vaccine design against zoonotic cutaneous leishmaniasis. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|