1
|
Fan SJ, Pan M, Xia CY, Yang P, Huang SY. Global research landscape and trends in Toxoplasma gondii from 2003 to 2022: A bibliometric analysis. Vet Parasitol 2025; 335:110438. [PMID: 40048864 DOI: 10.1016/j.vetpar.2025.110438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/16/2025]
Abstract
Toxoplasmosis is a globally prevalent zoonotic disease with significant public health impact, yet effective prevention and control measures remain lacking. This study analyzed 10,737 publications from 2003 to 2022 in the Web of Science and Scopus databases using bibliometric methods. Key metrics, including annual publication trends, journals, core authors, contributing countries, citations, and keywords, were examined. The findings indicate that publication output in toxoplasmosis research has remained stable, with core journals predominantly in the parasitology field. The United States leads in research capacity and contributions, followed by Brazil, Germany, the United Kingdom, and France, while China shows promising potential. Epidemiological research has been a longstanding hotspot in this field, encompassing areas such as diagnosis, prevention, treatment, virulence analysis, and genotyping. The field is expanding towards mechanistic research and translational applications, shifting its emphasis from basic science to practical public health applications and disease prevention strategies. Current research frontiers and emerging trends focus on host-pathogen interactions, innovative prevention and control methods, and the global public health implications of toxoplasmosis. This study provides a comprehensive overview of the past two decades of progress in toxoplasmosis research, offering valuable insights for future studies and academic development.
Collapse
Affiliation(s)
- Shi-Jie Fan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, and Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, and Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu Province 225009, China
| | - Ming Pan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, and Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, and Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu Province 225009, China
| | - Chen-Yang Xia
- Institute of Animal Science of Xizang Academy of Agricultural and Animal Husbandry Sciences, Key Laboratory of Animal Parasitoses of Xizang Autonomous Region, Lasa 850000, China
| | - Pin Yang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China.
| | - Si-Yang Huang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, and Jiangsu Coinnovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, and Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu Province 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China.
| |
Collapse
|
2
|
Ghaffari AD, Rahimi F. Immunoinformatics studies and design of a novel multi-epitope peptide vaccine against Toxoplasma gondii based on calcium-dependent protein kinases antigens through an in-silico analysis. Clin Exp Vaccine Res 2024; 13:146-154. [PMID: 38752002 PMCID: PMC11091428 DOI: 10.7774/cevr.2024.13.2.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 05/18/2024] Open
Abstract
Purpose Infection by the intracellular apicomplexan parasite Toxoplasma gondii has serious clinical consequences in humans and veterinarians around the world. Although about a third of the world's population is infected with T. gondii, there is still no effective vaccine against this disease. The aim of this study was to develop and evaluate a multimeric vaccine against T. gondii using the proteins calcium-dependent protein kinase (CDPK)1, CDPK2, CDPK3, and CDPK5. Materials and Methods Top-ranked major histocompatibility complex (MHC)-I and MHC-II binding as well as shared, immunodominant linear B-cell epitopes were predicted and linked using appropriate linkers. Moreover, the 50S ribosomal protein L7/L12 (adjuvant) was mixed with the construct's N-terminal to increase the immunogenicity. Then, the vaccine's physicochemical characteristics, antigenicity, allergenicity, secondary and tertiary structure were predicted. Results The finally-engineered chimeric vaccine had a length of 680 amino acids with a molecular weight of 74.66 kDa. Analyses of immunogenicity, allergenicity, and multiple physiochemical parameters indicated that the constructed vaccine candidate was soluble, non-allergenic, and immunogenic, making it compatible with humans and hence, a potentially viable and safe vaccine candidate against T. gondii parasite. Conclusion In silico, the vaccine construct was able to trigger primary immune responses. However, further laboratory studies are needed to confirm its effectiveness and safety.
Collapse
Affiliation(s)
- Ali Dalir Ghaffari
- Department of Parasitology and Mycology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Fardin Rahimi
- Department of Medical biotechnology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
3
|
Hafezi Ahmadi MR, Mamizadeh M, Siamian D, Touyeh MAA, Shams M, Rashidi Y. Immunoinformatic Analysis of Leishmania Major gp46 Protein and Potential Targets for Vaccination against Leishmaniasis. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2024; 18:129-139. [PMID: 38318831 DOI: 10.2174/0127722708283588240124095057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/02/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Cutaneous leishmaniasis (CL) is a parasitic disease with a significant burden in the Old World countries. OBJECTIVE In the current study, some of the primary biochemical properties and IFN-γ inducing epitopes with specific binding capacity to human and mouse MHC alleles were predicted for Leishmania major gp46 antigenic protein. METHODS Several online servers were used to predict physico-chemical traits, allergenicity, antigenicity, transmembrane domain and signal peptide, subcellular localization, post-translational modifications (PTMs), secondary and tertiary structures, tertiary model refining with validations. Also, IEDB web server was used to predict mouse/human cytotoxic T-lymphocyte (CTL) and helper T-lymphocyte (HTL) epitopes. RESULTS The 33.25 kDa protein was stable, hydrophilic, antigenic, while non-allergenic, with enhanced thermotolerance and 45 PTM sites. The secondary structure encompassed a random coil, followed by extended strands and helices. Ramachandran-based analysis of the refined model showed 73.1%, 21.6%, 3.4% and 1.9% of residues in the most favored, additional allowed, generously-allowed and disallowed regions, respectively. Epitope screening demonstrated 4 HTL epitopes against seemingly protective HLA alleles, 5 HTL epitopes against the HLA reference set, 3 human CTL epitopes and a number of mouse MHC-restricted epitopes. CONCLUSION This paper provides insights into the bioinformatics characteristics of the L. major gp46 protein as a promising vaccine candidate.
Collapse
Affiliation(s)
| | - Mina Mamizadeh
- Department of Dermatology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Davood Siamian
- Department of Biology, Faculty of Basic Science, Islamic Azad University, Tonekabon Branch, Mazandaran, Iran
| | - Mehdi Ali Asghari Touyeh
- Department of Cellular and Molecular Biology, Faculty of Basic Science, Sari Branch, Islamic Azad University, Sari, Iran
| | - Morteza Shams
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Yasaman Rashidi
- Veterinary Student, Islamic Azad University, Garmsar Branch, Garmsar, Iran
| |
Collapse
|
4
|
Madlala T, Adeleke VT, Okpeku M, Tshilwane SI, Adeniyi AA, Adeleke MA. Screening of apical membrane antigen-1 (AMA1), dense granule protein-7 (GRA7) and rhoptry protein-16 (ROP16) antigens for a potential vaccine candidate against Toxoplasma gondii for chickens. Vaccine X 2023; 14:100347. [PMID: 37519774 PMCID: PMC10384181 DOI: 10.1016/j.jvacx.2023.100347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023] Open
Abstract
Toxoplasmosis is a zoonotic disease caused by the protozoan parasite, Toxoplasma gondii known to infect almost all animals, including birds and humans globally. This disease has impacted the livestock industry and public health, where infection of domestic animals increases the zoonotic risk of transmission of infection to humans, threatening public health. Hence the need to discover novel and safe vaccines to fight against toxoplasmosis. In the current study, a novel multiepitope vaccine was designed using immunoinformatics techniques targeting T. gondii AMA1, GRA7 and ROP16 antigens, consisting of antigenic, immunogenic, non-allergenic and cytokine inducing T-cell (9 CD8+ and 15 CD4+) epitopes and four (4) B-cell epitopes fused together using AAY, KK and GPGPG linkers. The tertiary model of the proposed vaccine was predicted and validated to confirm the structural quality of the vaccine. The designed vaccine was highly antigenic (antigenicity = 0.6645), immunogenic (score = 2.89998), with molecular weight of 73.35 kDa, instability and aliphatic index of 28.70 and 64.10, respectively; and GRAVY of -0.363. The binding interaction, stability and flexibility were assessed with molecular docking and dynamics simulation, which revealed the proposed vaccine to have good structural interaction (binding affinity = -106.882 kcal/mol) and stability when docked with Toll like receptor-4 (TLR4). The results revealed that the Profilin-adjuvanted vaccine is promising, as it predicted induction of enhanced immune responses through the production of cytokines and antibodies critical in blocking host invasion.
Collapse
Affiliation(s)
- Thabile Madlala
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, P/Bag X54001, Durban 4000, South Africa
| | - Victoria T. Adeleke
- Department of Chemical Engineering, Mangosuthu University of Technology, Durban 4031, South Africa
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, P/Bag X54001, Durban 4000, South Africa
| | - Selaelo I. Tshilwane
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
| | - Adebayo A. Adeniyi
- Department of Industrial Chemistry, Federal University, Oye-Ekiti, P.O Box 370111, Nigeria
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Matthew A. Adeleke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, P/Bag X54001, Durban 4000, South Africa
| |
Collapse
|
5
|
Zhang Y, Li D, Shen Y, Li S, Lu S, Zheng B. Immunization with a novel mRNA vaccine, TGGT1_216200 mRNA-LNP, prolongs survival time in BALB/c mice against acute toxoplasmosis. Front Immunol 2023; 14:1161507. [PMID: 37122740 PMCID: PMC10140528 DOI: 10.3389/fimmu.2023.1161507] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Toxoplasma gondii, a specialized intracellular parasite, causes a widespread zoonotic disease and is a severe threat to social and economic development. There is a lack of effective drugs and vaccines against T. gondii infection. Recently, mRNA vaccines have been rapidly developed, and their packaging materials and technologies are well established. In this study, TGGT1_216200 (TG_200), a novel molecule from T. gondii, was identified using bioinformatic screening analysis. TG_200 was purified and encapsulated with a lipid nanoparticle (LNP) to produce the TG_200 mRNA-LNP vaccine. The immune protection provided by the new vaccine and its mechanisms after immunizing BABL/C mice via intramuscular injection were investigated. There was a strong immune response when mice were vaccinated with TG_200 mRNA-LNP. Elevated levels of anti-T. gondii-specific immunoglobulin G (IgG), and a higher IgG2a-to-IgG1 ratio was observed. The levels of interleukin-12 (IL-12), interferon-γ (IFN-γ), IL-4, and IL-10 were also elevated. The result showed that the vaccine induced a mixture of Th1 and Th2 cells, and Th1-dominated humoral immune response. Significantly increased antigen-specific splenocyte proliferation was induced by TG_200 mRNA-LNP immunization. The vaccine could also induce T. gondii-specific cytotoxic T lymphocytes (CTLs). The expression levels of interferon regulatory factor 8 (IRF8), T-Box 21 (T-bet), and nuclear factor kappa B (NF-κB) were significantly elevated after TG_200 mRNA-LNP immunization. The levels of CD83, CD86, MHC-I, MHC-II, CD8, and CD4 molecules were also higher. The results indicated that TG_200 mRNA-LNP produced specific cellular and humoral immune responses. Most importantly, TG_200 mRNA-LNP immunized mice survived significantly longer (19.27 ± 3.438 days) than the control mice, which died within eight days after T. gondii challenge (P< 0.001). The protective effect of adoptive transfer was also assessed, and mice receiving serum and splenocytes from mice immunized with TG_200 mRNA-LNP showed improved survival rates of 9.70 ± 1.64 days and, 13.40 ± 2.32 days, respectively (P< 0.001). The results suggested that TG_200 mRNA-LNP is a safe and promising vaccine against T. gondii infection.
Collapse
Affiliation(s)
- Yizhuo Zhang
- Institute of Parasitic Diseases, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Dan Li
- Institute of Parasitic Diseases, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Yu Shen
- Institute of Parasitic Diseases, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Shiyu Li
- Institute of Parasitic Diseases, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
| | - Shaohong Lu
- Institute of Parasitic Diseases, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Shaohong Lu, ; Bin Zheng,
| | - Bin Zheng
- Institute of Parasitic Diseases, School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, China
- Engineering Research Center of Novel Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Bio-tech Vaccine of Zhejiang Province, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Shaohong Lu, ; Bin Zheng,
| |
Collapse
|
6
|
Protective immunity induced with a DNA vaccine encoding B- and T-cells multi-epitope SAG1, ROP16, MIC4, GRA12, M2AP, and multi-epitope ROP8 against acute and chronic toxoplasmosis in BALB/c mice. Exp Parasitol 2022; 242:108385. [PMID: 36162598 DOI: 10.1016/j.exppara.2022.108385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 09/05/2022] [Accepted: 09/19/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND T. gondii infection is characterized by a high global prevalence. Nearly, 16-40% of people have been infected by T. gondii. Although T. gondii often causes subclinical infection, it may cause severe complications in newborns with congenital infection and immunocompromised individuals. Constant attempts of scientists have made valuable findings in the development of T. gondii candidate vaccines. However, an effective vaccine has not been successfully developed yet. In this study, multi-epitope SAG1, MIC4, ROP16, M2AP, GRA12, and multi-epitope ROP8 were injected into BALB/c mice intramuscularly, as cocktailed plasmids or as single-gene plasmids to assess the immune response against chronic and acute Toxoplasma infection. METHODS BALB/c mice were immunized on days 0, 21, and 42. The immune responses of both vaccinated and control groups were evaluated using cytokine and antibody measurements, lymphocyte proliferation assay, survival time, and average number of cysts in each brain. RESULTS The results indicated that DNA vaccination using multi-epitope ROP8 and multi-epitope SAG1, ROP16, MIC4, GRA12, M2AP could elicit both cellular and humoral immune responses, and enhanced the survival time in BALB/c mice. Also, the administration of multi-epitope ROP8 plus multi-epitope SAG1, ROP16, MIC4, GRA12, M2AP could enhance the concentrations of IgG antibody, elicit a mixed IgG1/IgG2a reaction with the predominance of the IgG2a, increase the release of IFN-γ cytokine, prolonge the survival time, and reduce the brain cysts. CONCLUSIONS Here, we report that vaccination using cocktailed plasmids could induce better protective immunity compared to single plasmid for acute and chronic T. gondii infection.
Collapse
|
7
|
Mining the Proteome of Toxoplasma Parasites Seeking Vaccine and Diagnostic Candidates. Animals (Basel) 2022; 12:ani12091098. [PMID: 35565525 PMCID: PMC9099775 DOI: 10.3390/ani12091098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary The One Health concept to toxoplasmosis highlights that the health of humans is closely related to the health of animals and our common environment. Toxoplasmosis outcomes might be severe and fatal in patients with immunodeficiency, diabetes, and pregnant women and infants. Consequently, the development of effective vaccine and diagnostic strategies is urgent for the elimination of this disease. Proteomics analysis has allowed the identification of key proteins that can be utilized in the development of novel disease diagnostics and vaccines. This work presents relevant proteins found in the proteome of the life cycle-specific stages of Toxoplasma parasites. In fact, it brings together the main functionality key proteins from Toxoplasma parasites coming from proteomic approaches that are most likely to be useful in improving the disease management, and critically proposes innovative directions to finally develop promising vaccines and diagnostics tools. Abstract Toxoplasma gondii is a pathogenic protozoan parasite that infects the nucleated cells of warm-blooded hosts leading to an infectious zoonotic disease known as toxoplasmosis. The infection outcomes might be severe and fatal in patients with immunodeficiency, diabetes, and pregnant women and infants. The One Health approach to toxoplasmosis highlights that the health of humans is closely related to the health of animals and our common environment. The presence of drug resistance and side effects, the further improvement of sensitivity and specificity of serodiagnostic tools and the potentiality of vaccine candidates to induce the host immune response are considered as justifiable reasons for the identification of novel targets for the better management of toxoplasmosis. Thus, the identification of new critical proteins in the proteome of Toxoplasma parasites can also be helpful in designing and test more effective drugs, vaccines, and diagnostic tools. Accordingly, in this study we present important proteins found in the proteome of the life cycle-specific stages of Toxoplasma parasites that are potential diagnostic or vaccine candidates. The current study might help to understand the complexity of these parasites and provide a possible source of strategies and biomolecules that can be further evaluated in the pathobiology of Toxoplasma parasites and for diagnostics and vaccine trials against this disease.
Collapse
|
8
|
Neospora caninum SRS2 Protein: Essential Vaccination Targets and Biochemical Features for Next-Generation Vaccine Design. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7070144. [PMID: 35434127 PMCID: PMC9007667 DOI: 10.1155/2022/7070144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/23/2022] [Indexed: 11/17/2022]
Abstract
Vaccination is a standout preventive measure to combat neosporosis among cattle herds. The present in silico study was done to evaluate the physicochemical properties and potent immunogenic epitopes of N. caninum SRS2 protein as a possible vaccine candidate. Web-based tools were used to predict physicochemical properties, antigenicity, allergenicity, solubility, posttranslational modification (PTM) sites, transmembrane domains and signal peptide, and secondary and tertiary structures as well as intrinsically disordered regions, followed by identification and screening of potential linear and conformational B-cell epitopes and those peptides having affinity to bind mouse major histocompatibility complex (MHC) and cytotoxic T lymphocyte (CTL). The protein had 401 residues with a molecular weight of 42 kDa, representing aliphatic index of 69.35 (thermotolerant) and GRAVY score of -0.294 (hydrophilic). There were 53 PTM sites without a signal peptide in the sequence. Secondary structure comprised mostly by extended strand, followed by helices and coils. The Ramachandran plot of the refined model showed 90.2%, 8.8%, 0.5%, and 0.5% residues in the favored, additional allowed, generously allowed, and disallowed regions, correspondingly. Additionally, various potential B-cell (linear and conformational), CTL, and MHC-binding epitopes were predicted for N. caninum SRS2. These epitopes could be further utilized in the multiepitope vaccine constructs directed against neosporosis.
Collapse
|
9
|
Taghipour A, Tavakoli S, Sabaghan M, Foroutan M, Majidiani H, Soltani S, Badri M, Ghaffari AD, Soltani S. Immunoinformatic Analysis of Calcium-Dependent Protein Kinase 7 (CDPK7) Showed Potential Targets for Toxoplasma gondii Vaccine. J Parasitol Res 2021; 2021:9974509. [PMID: 34336254 PMCID: PMC8295510 DOI: 10.1155/2021/9974509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 12/02/2022] Open
Abstract
Apicomplexan parasites, including Toxoplasma gondii (T. gondii), express different types of calcium-dependent protein kinases (CDPKs), which perform a variety of functions, including attacking and exiting the host cells. In the current bioinformatics study, we have used several web servers to predict the basic features and specifications of the CDPK7 protein. The findings showed that CDPK7 protein has 2133 amino acid residues with an average molecular weight (MW) of 219085.79 D. The aliphatic index with 68.78 and grand average of hydropathicity (GRAVY) with -0.331 score were estimated. The outcomes of current research showed that the CDPK7 protein included 502 alpha-helix, 1311 random coils, and 320 extended strands with GOR4 method. Considering the Ramachandran plot, the favored region contains more than 92% of the amino acid residues. In addition, evaluation of antigenicity and allergenicity showed that CDPK7 protein has immunogenic and nonallergenic nature. The present research provides key data for more animal-model study on the CDPK7 protein to design an efficient vaccine against toxoplasmosis in the future.
Collapse
Affiliation(s)
- Ali Taghipour
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sanaz Tavakoli
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Masoud Foroutan
- USERN Office, Abadan University of Medical Sciences, Abadan, Iran
| | - Hamidreza Majidiani
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Shahrzad Soltani
- USERN Office, Abadan University of Medical Sciences, Abadan, Iran
| | - Milad Badri
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ali Dalir Ghaffari
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sheyda Soltani
- USERN Office, Abadan University of Medical Sciences, Abadan, Iran
| |
Collapse
|