1
|
Shah FH, Eom YS, Kim SJ. Evaluation of phytochemicals of Poria cocos against tyrosinase protein: a virtual screening, pharmacoinformatics and molecular dynamics study. 3 Biotech 2023; 13:199. [PMID: 37215373 PMCID: PMC10195939 DOI: 10.1007/s13205-023-03626-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
Tyrosinase inhibitors are commonly used in the pharmaceutical and cosmetic industries for skin lightening and hypopigmentation. The current inhibitors of tyrosinase induce strong safety concerns which necessitate the discovery of new inhibitors. Natural compounds are a promising solution to discover potential candidate for anti-melanogenic activity as they possess less safety concerns and high therapeutic effect. The current study aimed to screen and identify potential phytochemicals from Poria cocos for tyrosinase inhibition. The phytochemicals were obtained from the Traditional Chinese Medicine System Pharmacology Database and screened for druglikeness score and toxicity class and then subjected to in-silico virtual screening and molecular dynamics. 7,9-(11)-Dehydropachymic acid established hydrogen interaction with the tyrosinase protein and was found to be highly stable as validated with MD simulations. The pharmacokinetic results showed that this compound has adequate toxicity and ADME profile that can be exploited for anti-melanogenic effects. Our study identified 7,9-(11)-dehydropachymic acid as an efficient candidate for tyrosinase inhibition. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03626-8.
Collapse
Affiliation(s)
- Fahad Hassan Shah
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, 32588 Republic of Korea
| | - Young Seok Eom
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, 32588 Republic of Korea
| | - Song Ja Kim
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, Gongju, 32588 Republic of Korea
| |
Collapse
|
2
|
Bhowmik D, Nandi R, Prakash A, Kumar D. Evaluation of flavonoids as 2019-nCoV cell entry inhibitor through molecular docking and pharmacological analysis. Heliyon 2021; 7:e06515. [PMID: 33748510 PMCID: PMC7955945 DOI: 10.1016/j.heliyon.2021.e06515] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/21/2020] [Accepted: 03/10/2021] [Indexed: 12/27/2022] Open
Abstract
The outbreak of Coronavirus Disease 2019 (COVID-19) has been declared as a Public Health Emergency of International Concern (PHEIC) by the World Health Organization (WHO), which is being rapidly spread by the extremely spreadable and pathogenic 2019 novel coronavirus (2019-nCoV), also known as SARS-CoV-2. Pandemic incidence of COVID-19 has created a severe threat to global public health, necessitating the development of effective drugs or inhibitors or therapeutics agents against SARS-CoV-2. Spike protein (S) of the SARS-CoV-2 plays a crucial role in entering viruses into the host cell by binding to angiotensin-converting enzyme 2 (ACE-2), and this specific interaction represents a promising drug target for the identification of potential drugs. This study aimed at the receptor-binding domain of S protein (RBD of nCoV-SP) and the ACE-2 receptor as a promising target for developing drugs against SARS-CoV-2. Over 100 different flavonoids with antioxidant, anti-inflammatory, and antiviral properties from different literatures were taken as a ligand or inhibitor for molecular docking against target protein RBD of nCoV-SP and ACE-2 using PyRX and iGEMDOCK. Top flavonoids based on docking scores were selected for the pharmacokinetic study. Selected flavonoids (hesperidin, naringin, ECGC, and quercetin) showed excellent pharmacokinetics with proper absorption, solubility, permeability, distribution, metabolism, minimal toxicity, and excellent bioavailability. Molecular dynamics simulation studies up to 100 ns exhibited strong binding affinity of selected flavonoids to RBD of nCoV-SP and ACE-2, and the protein-ligand complexes were structurally stable. These identified lead flavonoids may act as potential compounds for developing effective drugs against SARS-CoV-2 by potentially inhibiting virus entry into the host cell.
Collapse
Affiliation(s)
- Deep Bhowmik
- Department of Microbiology, Assam University, Silchar, 788011, Assam, India
| | - Rajat Nandi
- Department of Microbiology, Assam University, Silchar, 788011, Assam, India
| | - Amresh Prakash
- Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurgaon, 122413, India
| | - Diwakar Kumar
- Department of Microbiology, Assam University, Silchar, 788011, Assam, India
| |
Collapse
|
3
|
Bhowmik D, Jagadeesan R, Rai P, Nandi R, Gugan K, Kumar D. Evaluation of potential drugs against leishmaniasis targeting catalytic subunit of Leishmania donovani nuclear DNA primase using ligand based virtual screening, docking and molecular dynamics approaches. J Biomol Struct Dyn 2020; 39:1838-1852. [PMID: 32141397 DOI: 10.1080/07391102.2020.1739557] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Leishmania donovani, causes leishmaniasis, a global health trouble with around 89 different countries and its population under its risk. Replication initiation events have been instrumental in regulating the DNA duplication and as the small subunit of L. donovani nuclear DNA primase (Ld-PriS) inherits the catalytic site, it plays a vital role in DNA replication. In this study we have aimed Ld-PriS for the first time as a prospective target for the application of drug against Leishmania parasite. 3-D structures of Ld-PriS were built and ligand-based virtual screening was performed using hybrid similarity recognition techniques. Ligands from the ZINC database were used for the screening purposes based on known DNA primase inhibitor Sphingosine as a query. Top 150 ligands were taken into consideration for molecular docking against the query protein (Ld-PriS) using PyRx and iGEMDOCK softwares. Top five compounds with the best docking score were selected for pharmacokinetic investigation and molecular dynamic simulation. These top five screened inhibitors showed very poor binding affinity toward the catalytic subunit of human primase indicating their safety toward the host normal replication mechanism. The top five compounds showed good pharmacokinetic profiles and ADMET predictions revealed good absorption, solubility, permeability, uniform distribution, proper metabolism, minimal toxicity and good bioavailability. Simulation studies upto 50 ns revealed the three leads ZINC000009219046, ZINC000025998119 and ZINC000004677901 bind with Ld-PriS throughout the simulation and there were no huge variations in their backbone suggesting that these three may play as potential lead compounds for developing new drug against leishmaniasis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Deep Bhowmik
- Department of Microbiology, Assam University, Silchar, Assam, India
| | - Rahul Jagadeesan
- CAS in Crystallography and Biophysics, Guindy Campus, University of Madras, Chennai, India
| | - Praveen Rai
- Department of Biotechnology, Central University of Rajasthan, Bandarsindri, India
| | - Rajat Nandi
- Department of Microbiology, Assam University, Silchar, Assam, India
| | - Kothandan Gugan
- CAS in Crystallography and Biophysics, Guindy Campus, University of Madras, Chennai, India
| | - Diwakar Kumar
- Department of Microbiology, Assam University, Silchar, Assam, India
| |
Collapse
|
4
|
Ranganathan AT, Sarathy S, Chandran CR, Iyan K. Subgingival prevalence rate of enteric rods in subjects with periodontal health and disease. J Indian Soc Periodontol 2017; 21:224-228. [PMID: 29440790 PMCID: PMC5803879 DOI: 10.4103/jisp.jisp_204_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/19/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The prevalence of enteric rods and their association with chronic periodontitis has gained prominence recently. Although the prevalence of these organisms from the subgingival plaque sample was reported in the literature, the carriage rate of these rods in our population is lacking. The present study was undertaken to know the carriage rate of enteric rods from our population in patients with periodontal health and disease. MATERIALS AND METHODS Eighty-four systemically healthy participants, inclusive of 46 males and 38 females, were selected for the study. The selected participants were subjected to a periodontal examination and were categorized into chronic periodontitis and healthy group. Subgingival plaque samples were taken from all the participants, plated onto McConkey agar plates, and incubated overnight at 37° C to check for the growth of organisms. The grown organisms were then cultured according to the standard procedures. RESULTS Prevalence of 71% and 83% of enteric rods in subjects with periodontal health and disease, respectively, was found in our study which was not statistically significant. CONCLUSION Although no significant differences exist in the prevalence of enteric rods between healthy and patients with chronic periodontitis, the prevalence rate of enteric rods in subgingival plaque samples is considerably high in our population.
Collapse
Affiliation(s)
| | - Sarath Sarathy
- Department of Periodontics, Tagore Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Chitraa Rama Chandran
- Department of Periodontics, Tagore Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Kannan Iyan
- Department of Microbiology, Tagore Medical College and Hospital, Chennai, Tamil Nadu, India
| |
Collapse
|
5
|
Rath H, Stumpp SN, Stiesch M. Development of a flow chamber system for the reproducible in vitro analysis of biofilm formation on implant materials. PLoS One 2017; 12:e0172095. [PMID: 28187188 PMCID: PMC5302373 DOI: 10.1371/journal.pone.0172095] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/31/2017] [Indexed: 11/28/2022] Open
Abstract
Since the introduction of modern dental implants in the 1980s, the number of inserted implants has steadily increased. Implant systems have become more sophisticated and have enormously enhanced patients’ quality of life. Although there has been tremendous development in implant materials and clinical methods, bacterial infections are still one of the major causes of implant failure. These infections involve the formation of sessile microbial communities, called biofilms. Biofilms possess unique physical and biochemical properties and are hard to treat conventionally. There is a great demand for innovative methods to functionalize surfaces antibacterially, which could be used as the basis of new implant technologies. Present, there are few test systems to evaluate bacterial growth on these surfaces under physiological flow conditions. We developed a flow chamber model optimized for the assessment of dental implant materials. As a result it could be shown that biofilms of the five important oral bacteria Streptococcus gordonii, Streptococcus oralis, Streptococcus salivarius, Porphyromonas gingivalis, and Aggregatibacter actinomycetemcomitans, can be reproducibly formed on the surface of titanium, a frequent implant material. This system can be run automatically in combination with an appropriate microscopic device and is a promising approach for testing the antibacterial effect of innovative dental materials.
Collapse
Affiliation(s)
- Henryke Rath
- Department for Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
- * E-mail:
| | - Sascha Nico Stumpp
- Department for Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| | - Meike Stiesch
- Department for Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| |
Collapse
|
6
|
Chitranshi N, Gupta V, Dheer Y, Gupta V, Vander Wall R, Graham S. Molecular determinants and interaction data of cyclic peptide inhibitor with the extracellular domain of TrkB receptor. Data Brief 2016; 6:776-82. [PMID: 26909388 PMCID: PMC4744334 DOI: 10.1016/j.dib.2016.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/29/2015] [Accepted: 01/08/2016] [Indexed: 11/24/2022] Open
Abstract
TrkB is a high affinity receptor for the brain derived neurotrophic factor (BDNF) and its phosphorylation stimulates activation of several intracellular signalling pathways linked to cellular growth, differentiation and maintenance. Identification of various activators and inhibitors of the TrkB receptor and greater understanding their binding mechanisms is critical to elucidate the biochemical and pharmacological pathways and analyse various protein crystallization studies. The data presented here is related to the research article entitled “Brain Derived neurotrophic factor is involved in the regulation of glycogen synthase kinase 3β (GSK3β) signalling” [1]. Cyclotraxin B (CTXB) is a disulphide bridge linked cyclic peptide molecule that interacts with TrkB receptor and inhibits the BDNF/TrkB downstream signalling. This article reports for the first time binding mechanism and interaction parameters of CTXB with the TrkB receptor. The molecular model of CTXB has been generated and it’s docking with TrkB domain carried out to determine the critical residues involved in the protein peptide interaction.
Collapse
Affiliation(s)
- Nitin Chitranshi
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia
| | - Vivek Gupta
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia
| | - Yogita Dheer
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia
| | - Veer Gupta
- School of Medical Sciences, Edith Cowan University, Perth, Australia
| | - Roshana Vander Wall
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia
| | - Stuart Graham
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia; Save Sight Institute, Sydney University, Sydney, NSW 2109, Australia
| |
Collapse
|