1
|
Gustaw K, Koper P, Polak-Berecka M, Rachwał K, Skrzypczak K, Waśko A. Genome and Pangenome Analysis of Lactobacillus hilgardii FLUB-A New Strain Isolated from Mead. Int J Mol Sci 2021; 22:ijms22073780. [PMID: 33917427 PMCID: PMC8038741 DOI: 10.3390/ijms22073780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/26/2021] [Accepted: 04/05/2021] [Indexed: 11/16/2022] Open
Abstract
The production of mead holds great value for the Polish liquor industry, which is why the bacterium that spoils mead has become an object of concern and scientific interest. This article describes, for the first time, Lactobacillus hilgardii FLUB newly isolated from mead, as a mead spoilage bacteria. Whole genome sequencing of L. hilgardii FLUB revealed a 3 Mbp chromosome and five plasmids, which is the largest reported genome of this species. An extensive phylogenetic analysis and digital DNA-DNA hybridization confirmed the membership of the strain in the L. hilgardii species. The genome of L. hilgardii FLUB encodes 3043 genes, 2871 of which are protein coding sequences, 79 code for RNA, and 93 are pseudogenes. L. hilgardii FLUB possesses three clustered regularly interspaced short palindromic repeats (CRISPR), eight genomic islands (44,155 bp to 6345 bp), and three (two intact and one incomplete) prophage regions. For the first time, the characteristics of the genome of this species were described and a pangenomic analysis was performed. The concept of the pangenome was used not only to establish the genetic repertoire of this species, but primarily to highlight the unique characteristics of L. hilgardii FLUB. The core of the genome of L. hilgardii is centered around genes related to the storage and processing of genetic information, as well as to carbohydrate and amino acid metabolism. Strains with such a genetic constitution can effectively adapt to environmental changes. L. hilgardii FLUB is distinguished by an extensive cluster of metabolic genes, arsenic detoxification genes, and unique surface layer proteins. Variants of MRS broth with ethanol (10-20%), glucose (2-25%), and fructose (2-24%) were prepared to test the strain's growth preferences using Bioscreen C and the PYTHON script. L. hilgardii FLUB was found to be more resistant than a reference strain to high concentrations of alcohol (18%) and sugars (25%). It exhibited greater preference for fructose than glucose, which suggests it has a fructophilic nature. Comparative genomic analysis supported by experimental research imitating the conditions of alcoholic beverages confirmed the niche specialization of L. hilgardii FLUB to the mead environment.
Collapse
Affiliation(s)
- Klaudia Gustaw
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (M.P.-B.); (K.R.); (A.W.)
- Correspondence: (K.G.); (P.K.)
| | - Piotr Koper
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
- Correspondence: (K.G.); (P.K.)
| | - Magdalena Polak-Berecka
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (M.P.-B.); (K.R.); (A.W.)
| | - Kamila Rachwał
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (M.P.-B.); (K.R.); (A.W.)
| | - Katarzyna Skrzypczak
- Department of Fruits, Vegetables and Mushrooms Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland;
| | - Adam Waśko
- Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; (M.P.-B.); (K.R.); (A.W.)
| |
Collapse
|
2
|
Exposures to arsenite and methylarsonite produce insulin resistance and impair insulin-dependent glycogen metabolism in hepatocytes. Arch Toxicol 2017; 91:3811-3821. [PMID: 28952001 DOI: 10.1007/s00204-017-2076-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 09/21/2017] [Indexed: 02/06/2023]
Abstract
Environmental exposure to inorganic arsenic (iAs) has been shown to disturb glucose homeostasis, leading to diabetes. Previous laboratory studies have suggested several mechanisms that may underlie the diabetogenic effects of iAs exposure, including (i) inhibition of insulin signaling (leading to insulin resistance) in glucose metabolizing peripheral tissues, (ii) inhibition of insulin secretion by pancreatic β cells, and (iii) dysregulation of the methylation or expression of genes involved in maintenance of glucose or insulin metabolism and function. Published studies have also shown that acute or chronic iAs exposures may result in depletion of hepatic glycogen stores. However, effects of iAs on pathways and mechanisms that regulate glycogen metabolism in the liver have never been studied. The present study examined glycogen metabolism in primary murine hepatocytes exposed in vitro to arsenite (iAs3+) or its methylated metabolite, methylarsonite (MAs3+). The results show that 4-h exposures to iAs3+ and MAs3+ at concentrations as low as 0.5 and 0.2 µM, respectively, decreased glycogen content in insulin-stimulated hepatocytes by inhibiting insulin-dependent activation of glycogen synthase (GS) and by inducing activity of glycogen phosphorylase (GP). Further investigation revealed that both iAs3+ and MAs3+ inhibit insulin-dependent phosphorylation of protein kinase B/Akt, one of the mechanisms involved in the regulation of GS and GP by insulin. Thus, inhibition of insulin signaling (i.e., insulin resistance) is likely responsible for the dysregulation of glycogen metabolism in hepatocytes exposed to iAs3+ and MAs3+. This study provides novel information about the mechanisms by which iAs exposure impairs glucose homeostasis, pointing to hepatic metabolism of glycogen as one of the targets.
Collapse
|