2
|
Soloukey S, Verhoef L, Jan van Doormaal P, Generowicz BS, Dirven CMF, De Zeeuw CI, Koekkoek SKE, Kruizinga P, Vincent AJPE, Schouten JW. High-resolution micro-Doppler imaging during neurosurgical resection of an arteriovenous malformation: illustrative case. JOURNAL OF NEUROSURGERY. CASE LESSONS 2022; 4:CASE22177. [PMID: 36345205 PMCID: PMC9644416 DOI: 10.3171/case22177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/12/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE Given the high-risk nature of arteriovenous malformation (AVM) resections, accurate pre- and intraoperative imaging of the vascular morphology is a crucial component that may contribute to successful surgical results. Surprisingly, current gold standard imaging techniques for surgical guidance of AVM resections are mostly preoperative, lacking the necessary flexibility to cater to intraoperative changes. Micro-Doppler imaging is a unique high-resolution technique relying on high frame rate ultrasound and subsequent Doppler processing of microvascular hemodynamics. In this paper the authors report the first application of intraoperative, coregistered magnetic resonance/computed tomograpy, micro-Doppler imaging during the neurosurgical resection of an AVM in the parietal lobe. OBSERVATIONS The authors applied intraoperative two-dimensional and three-dimensional (3D) micro-Doppler imaging during resection and were able to identify key anatomical features including draining veins, supplying arteries and microvasculature in the nidus itself. Compared to the corresponding preoperative 3D-digital subtraction angiography (DSA) image, the micro-Doppler images could delineate vascular structures and visualize hemodynamics with higher, submillimeter scale detail, even at significant depths (>5 cm). Additionally, micro-Doppler imaging revealed unique microvascular morphology of surrounding healthy vasculature. LESSONS The authors conclude that micro-Doppler imaging in its current form has clear potential as an intraoperative counterpart to preoperative contrast-dependent DSA, and the microvascular details it provides could build new ground to further study cerebrovascular pathophysiology.
Collapse
Affiliation(s)
| | | | | | | | | | - Chris I. De Zeeuw
- Departments of Neuroscience
- Netherlands Institute for Neuroscience, Royal Dutch Academy for Arts and Sciences, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
4
|
Wang M, Jiao Y, Zeng C, Zhang C, He Q, Yang Y, Tu W, Qiu H, Shi H, Zhang D, Kang D, Wang S, Liu AL, Jiang W, Cao Y, Zhao J. Chinese Cerebrovascular Neurosurgery Society and Chinese Interventional & Hybrid Operation Society, of Chinese Stroke Association Clinical Practice Guidelines for Management of Brain Arteriovenous Malformations in Eloquent Areas. Front Neurol 2021; 12:651663. [PMID: 34177760 PMCID: PMC8219979 DOI: 10.3389/fneur.2021.651663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
Aim: The aim of this guideline is to present current and comprehensive recommendations for the management of brain arteriovenous malformations (bAVMs) located in eloquent areas. Methods: An extended literature search on MEDLINE was performed between Jan 1970 and May 2020. Eloquence-related literature was further screened and interpreted in different subcategories of this guideline. The writing group discussed narrative text and recommendations through group meetings and online video conferences. Recommendations followed the Applying Classification of Recommendations and Level of Evidence proposed by the American Heart Association/American Stroke Association. Prerelease review of the draft guideline was performed by four expert peer reviewers and by the members of Chinese Stroke Association. Results: In total, 809 out of 2,493 publications were identified to be related to eloquent structure or neurological functions of bAVMs. Three-hundred and forty-one publications were comprehensively interpreted and cited by this guideline. Evidence-based guidelines were presented for the clinical evaluation and treatment of bAVMs with eloquence involved. Topics focused on neuroanatomy of activated eloquent structure, functional neuroimaging, neurological assessment, indication, and recommendations of different therapeutic managements. Fifty-nine recommendations were summarized, including 20 in Class I, 30 in Class IIa, 9 in Class IIb, and 2 in Class III. Conclusions: The management of eloquent bAVMs remains challenging. With the evolutionary understanding of eloquent areas, the guideline highlights the assessment of eloquent bAVMs, and a strategy for decision-making in the management of eloquent bAVMs.
Collapse
Affiliation(s)
- Mingze Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Yuming Jiao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Chaofan Zeng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Chaoqi Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Yi Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Wenjun Tu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Hancheng Qiu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Huaizhang Shi
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dong Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Dezhi Kang
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - A-li Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Gamma Knife Center, Beijing Neurosurgical Institute, Beijing, China
| | - Weijian Jiang
- Department of Vascular Neurosurgery, Chinese People's Liberation Army Rocket Army Characteristic Medical Center, Beijing, China
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Walkden JS, Zador Z, Herwadkar A, Kamaly-Asl ID. Use of intraoperative Doppler ultrasound with neuronavigation to guide arteriovenous malformation resection: a pediatric case series. J Neurosurg Pediatr 2015; 15:291-300. [PMID: 25525933 DOI: 10.3171/2014.10.peds14249] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Over the last 20 years, several intraoperative adjuncts, including ultrasonography, neuronavigation, and angiography, have been said to aid the intraoperative localization and resection of cerebral arteriovenous malformations (AVMs). The authors assessed the value of intraoperative Doppler ultrasonography in conjunction with neuronavigation during surgery for cerebral AVMs in the pediatric population. METHODS The authors reviewed all cranial AVM resections performed by a single surgeon at their institution in the period from 2007 to 2013 and here describe their experience and results in a series of 20 consecutive AVM resections in 19 pediatric patients. Intraoperative Doppler ultrasonography had been used in conjunction with preoperative CT or neuronavigational MRI. Preoperative and postoperative clinical findings, patient age, and Spetzler-Martin AVM grade were identified in all patients. RESULTS All patients, whose ages ranged from 2 to 16 years, underwent craniotomy and excision of an AVM, which was supratentorial in 18 cases and infratentorial in 2. Patients in 11 cases underwent preoperative embolization, and all other patients underwent cerebral angiography prior to surgery, except for 2 patients who were urgently surgically treated because of low Glasgow Coma Scale scores and associated hematoma. Spetzler-Martin Grades I (3 cases), II (6), III (7), and IV (4) AVMs were represented in this series. Intraoperative Doppler ultrasound provided high-quality images in all cases and demonstrated the location, size, and flow characteristics of the AVM and any associated hematoma. Delayed postoperative cerebral angiography demonstrated successful AVM resection in all cases. An assessment of clinical outcomes revealed no new long-term neurological deficits at 3 months postoperatively. CONCLUSIONS Intraoperative Doppler ultrasonography is a reliable and useful tool for intraoperative localization and guidance for AVM resection in the pediatric population. When used in conjunction with neuronavigation equipment and modern microscopes, this technique has shown a very high complete resection rate with extremely low associated morbidity.
Collapse
Affiliation(s)
- James S Walkden
- Departments of Neurosurgery and Neuroradiology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | | | | | | |
Collapse
|
8
|
Fu B, Zhao JZ, Yu LB. The application of ultrasound in the management of cerebral arteriovenous malformation. Neurosci Bull 2009; 24:387-94. [PMID: 19037325 DOI: 10.1007/s12264-008-1013-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Ultrasound is used in the diagnosis, treatment and follow-up of cerebral arteriovenous malformation (AVM). Several parameters including flow velocity, flow volume, resistance index, pulsatility index, vasomotor reactivity and their influencing factors are reviewed. The applications of ultrasound in the preoperative evaluation, intraoperative monitor and postoperative follow-up of AVM, are summarized. Although some limits exist, ultrasound can provide more reliable information about AVM, if lesions are classified according to their characteristics, compared in different conditions between preoperation and postoperation, feeding and non-feeding side, patients and healthy adults, and if ultrasound method is combined with other examinations and different developed ultrasound techniques. With the appearance and development of new ultrasound technique, its application will be wider in management of AVM.
Collapse
Affiliation(s)
- Bing Fu
- Department of neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | | | | |
Collapse
|
9
|
Wang Y, Wang Y, Wang Y, Taniguchi N, Chen XC. Intraoperative real-time contrast-enhanced ultrasound angiography: a new adjunct in the surgical treatment of arteriovenous malformations. J Neurosurg 2007; 107:959-64. [DOI: 10.3171/jns-07/11/0959] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
The goal of this study was to combine the use of ultrasound contrast agents with intraoperative ultrasound techniques to identify intraoperatively a patient's vascular anatomy, including feeding arteries and draining veins of an intracranial arteriovenous malformation (AVM).
Methods
The authors examined 12 consecutive patients with AVMs that had been diagnosed on the basis of preoperative findings on magnetic resonance images and digital subtraction angiograms obtained between September 2003 and December 2005. After each patient had undergone a routine craniotomy, a bolus of contrast agent was injected intravenously, and a real-time microbubble perfusion process was observed to identify the feeding arteries and draining veins of the AVM in a single cross-section. The so-called burst–refill technique was used to sweep the lesion in multiple sections and orientations to obtain information on the surrounding vascular anatomy, after which the findings were compared with those obtained during preoperative imaging.
Results
Intraoperative ultrasonography provided high-quality images in every case. Although plain imaging failed to show an identifiable AVM boundary, color Doppler flow imaging clearly delineated the shape and margin of the AVM. Nevertheless, neither mode of imaging enabled the surgeons to categorically distinguish between feeding and draining vessels.
The real-time perfusion process of microbubbles was first visualized 20 to 30 seconds after the SonoVue bolus injection, and the burst–refill technique made possible identification of the vascular anatomy of malformation lesions in multiple planes.
Conclusions
Using both an ultrasound contrast agent and the burst–refill technique provided a rapid, convenient, and precise way of locating AVM feeding arteries intraoperatively. The combined technique seems warranted in the intraoperative treatment of AVMs.
Collapse
Affiliation(s)
- Yi Wang
- 1Departments of Ultrasound and
| | | | | | - Nobuyuki Taniguchi
- 2Department of Clinical Laboratory Medicine, Jichi Medical University, School of Medicine, Shimotsuke, Tochigi, Japan
| | - Xian-Cheng Chen
- 3Neurosurgery, Fudan University Affiliated Huashan Hospital, Shanghai, China; and
| |
Collapse
|
12
|
Bartels E. Evaluation of arteriovenous malformations (AVMs) with transcranial color-coded duplex sonography: does the location of an AVM influence its sonographic detection? JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2005; 24:1511-7. [PMID: 16239654 DOI: 10.7863/jum.2005.24.11.1511] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
OBJECTIVE The clinical value of transcranial color-coded duplex sonography (TCCS) in the evaluation of arteriovenous malformations (AVMs) has not yet been fully investigated. In this study, 54 intracranial AVMs confirmed by angiography were prospectively examined over 6 years. The purpose of the study was to describe their typical sonographic features and to define sensitivity for diagnosis with regard to the location of an AVM. METHODS Transcranial color-coded duplex sonographic findings for 54 patients with intracranial AVMs are presented. The vessels of the circle of Willis were identified by location, course, and direction of flow on color flow images. RESULTS In accordance with digital subtraction angiography, the intracranial AVMs could be visualized in 42 cases (sensitivity, 77.8%). The pathologic vessels were coded in different shades of blue and red, corresponding to varying blood flow directions in the AVM. The major feeding vessels could be easily identified. Hemodynamic parameters showing increased systolic and diastolic flow velocities and a decreased pulsatility index were better attainable with TCCS than with conventional transcranial Doppler sonography. Arteriovenus malformations located near the cortex, that is, in the parietal, frontal, occipital, and cerebellar regions of the brain, could not be visualized. In contrast, AVMs located in the basal regions were very easy to image (sensitivity, 88.9%). Additionally, TCCS proved useful for follow-up examinations postoperatively or after embolization. CONCLUSIONS Transcranial color-coded duplex sonography is a valuable noninvasive method for the diagnosis and long-term follow-up of intracranial AVMs. Arteriovenous malformations located in the axial imaging plane can be more easily detected. Nevertheless, TCCS should not be used as a screening method.
Collapse
Affiliation(s)
- Eva Bartels
- Department of Clinical Neurophysiology, Georg-August-University Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany.
| |
Collapse
|