1
|
Zhang K, Liu X, Huang S, Liu X, Zhao M, Xue C, Xia S, Dong J, Kong Y, Ma C. Association between echocardiographic parameters of cardiac structure and function and mild cognitive impairment. BMC Cardiovasc Disord 2025; 25:85. [PMID: 39910419 PMCID: PMC11800402 DOI: 10.1186/s12872-025-04528-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/28/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Cardiovascular diseases (CVDs) marked with cardiac morphological or hemodynamical abnormalities are associated with mild cognitive impairment (MCI). The links between cardiac structure and function and MCI are not well understood. We aimed to explore the association between echocardiographic parameters of cardiac structure and function and MCI in CVD patients. METHODS We conducted an age-, gender-, and education level-matched case-control study in general CVD participants with a 1:3 ratio of MCI (Montreal Cognitive Assessment [MoCA] score < 26 and Mini-Mental State Examination [MMSE] score ≥ 24) and cognitively normal participants at a tertiary hospital in Beijing, China. The echocardiographic cardiac parameters and cognitive status were retrieved through the clinical electronic database from May 2021 to August 2023. Principal component analysis (PCA), negative binomial, and conditional multivariate regression were performed. RESULTS A total of 1136 CVD participants (mean age, 61.2 ± 8.3 years) were included in the study, comprising 289 (25.3%) MCI and 847 cognitively normal participants. Compared to cognitively normal participants, MCI participants had a higher prevalence of left ventricular (LV) diastolic dysfunction (54.0% vs. 40.3%; P < 0.001) and greater interventricular septal thickness (IVST) (1.04 ± 0.20 cm vs. 1.00 ± 0.17 cm; P = 0.002). LV diastolic dysfunction (Beta [SE], 0.234 [0.045]; P < 0.001) and IVST (Beta [SE], 0.034 [0.016]; P = 0.036) were negatively correlated with the MoCA score of global cognitive function. LV diastolic dysfunction (OR, 2.03; 95% CI, 1.48-2.79; P < 0.001) and IVST (OR, 1.14; 95% CI, 1.03-1.27; P = 0.014) were positively associated with MCI, independent of diagnosed CVDs and the conventional MCI risk factors. CONCLUSIONS General CVD patients with abnormal echocardiographic LV diastolic dysfunction and IVST were associated with cognitive decline, suggesting further cognitive assessment for MCI. TRIAL REGISTRATION Retrospectively registered.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Office of Beijing Cardiovascular Diseases Prevention, Beijing, China
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Xiaoxia Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Office of Beijing Cardiovascular Diseases Prevention, Beijing, China
| | - Siyu Huang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Xinrui Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Office of Beijing Cardiovascular Diseases Prevention, Beijing, China
| | - Meiqi Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Office of Beijing Cardiovascular Diseases Prevention, Beijing, China
| | - Chao Xue
- Echocardiography Medical Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Shijun Xia
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Office of Beijing Cardiovascular Diseases Prevention, Beijing, China
| | - Jianzeng Dong
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Office of Beijing Cardiovascular Diseases Prevention, Beijing, China
| | - Yu Kong
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Office of Beijing Cardiovascular Diseases Prevention, Beijing, China.
| | - Changsheng Ma
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Office of Beijing Cardiovascular Diseases Prevention, Beijing, China
| |
Collapse
|
2
|
Aishwarya R, Abdullah CS, Remex NS, Bhuiyan MAN, Lu XH, Dhanesha N, Stokes KY, Orr AW, Kevil CG, Bhuiyan MS. Diastolic dysfunction in Alzheimer's disease model mice is associated with Aβ-amyloid aggregate formation and mitochondrial dysfunction. Sci Rep 2024; 14:16715. [PMID: 39030247 PMCID: PMC11271646 DOI: 10.1038/s41598-024-67638-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024] Open
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disease caused by the deposition of Aβ aggregates or neurofibrillary tangles. AD patients are primarily diagnosed with the concurrent development of several cardiovascular dysfunctions. While few studies have indicated the presence of intramyocardial Aβ aggregates, none of the studies have performed detailed analyses for pathomechanism of cardiac dysfunction in AD patients. This manuscript used aged APPSWE/PS1 Tg and littermate age-matched wildtype (Wt) mice to characterize cardiac dysfunction and analyze associated pathophysiology. Detailed assessment of cardiac functional parameters demonstrated the development of diastolic dysfunction in APPSWE/PS1 Tg hearts compared to Wt hearts. Muscle function evaluation showed functional impairment (decreased exercise tolerance and muscle strength) in APPSWE/PS1 Tg mice. Biochemical and histochemical analysis revealed Aβ aggregate accumulation in APPSWE/PS1 Tg mice myocardium. APPSWE/PS1 Tg mice hearts also demonstrated histopathological remodeling (increased collagen deposition and myocyte cross-sectional area). Additionally, APPSWE/PS1 Tg hearts showed altered mitochondrial dynamics, reduced antioxidant protein levels, and impaired mitochondrial proteostasis compared to Wt mice. APPSWE/PS1 Tg hearts also developed mitochondrial dysfunction with decreased OXPHOS and PDH protein complex expressions, altered ETC complex dynamics, decreased complex activities, and reduced mitochondrial respiration. Our results indicated that Aβ aggregates in APPSWE/PS1 Tg hearts are associated with defects in mitochondrial respiration and complex activities, which may collectively lead to cardiac diastolic dysfunction and myocardial pathological remodeling.
Collapse
Affiliation(s)
- Richa Aishwarya
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
| | - Chowdhury S Abdullah
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
| | - Naznin Sultana Remex
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Mohammad Alfrad Nobel Bhuiyan
- Department of Medicine, Division of Clinical Informatics, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Xiao-Hong Lu
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Nirav Dhanesha
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
| | - Karen Y Stokes
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - A Wayne Orr
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Christopher G Kevil
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Md Shenuarin Bhuiyan
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71130, USA.
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA.
| |
Collapse
|
3
|
Marshall AG, Neikirk K, Shao B, Crabtree A, Vue Z, Beasley HK, Garza-Lopez E, Scudese E, Wanjalla CN, Kirabo A, Albritton CF, Jamison S, Demirci M, Murray SA, Cooper AT, Taffet GE, Hinton AO, Reddy AK. Methods to Utilize Pulse Wave Velocity to Measure Alterations in Cerebral and Cardiovascular Parameters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.22.546154. [PMID: 38798364 PMCID: PMC11118486 DOI: 10.1101/2023.06.22.546154] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Alzheimer's Disease (AD) is a global health issue, affecting over 6 million in the United States, with that number expected to increase as the aging population grows. As a neurodegenerative disorder that affects memory and cognitive functions, it is well established that AD is associated with cardiovascular risk factors beyond only cerebral decline. However, the study of cerebrovascular techniques for AD is still evolving. Here, we provide reproducible methods to measure impedance-based pulse wave velocity (PWV), a marker of arterial stiffness, in the systemic vascular (aortic PWV) and in the cerebral vascular (cerebral PWV) systems. Using aortic impedance and this relatively novel technique of cerebral impedance to comprehensively describe the systemic vascular and the cerebral vascular systems, we examined the sex-dependent differences in 5x transgenic mice (5XFAD) with AD under normal and high-fat diet, and in wild-type mice under a normal diet. Additionally, we validated our method for measuring cerebrovascular impedance in a model of induced stress in 5XFAD. Together, our results show that sex and diet differences in wildtype and 5XFAD mice account for very minimal differences in cerebral impedance. Interestingly, 5XFAD, and not wildtype, male mice on a chow diet show higher cerebral impedance, suggesting pathological differences. Opposingly, when we subjected 5XFAD mice to stress, we found that females showed elevated cerebral impedance. Using this validated method of measuring impedance-based aortic and cerebral PWV, future research may explore the effects of modifying factors including age, chronic diet, and acute stress, which may mediate cardiovascular risk in AD.
Collapse
Affiliation(s)
- Andrea G. Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Bryanna Shao
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Amber Crabtree
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Heather K. Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Edgar Garza-Lopez
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Estevão Scudese
- Laboratory of Biosciences of Human Motricity (LABIMH) of the Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil; Sport Sciences and Exercise Laboratory (LaCEE), Catholic University of Petrópolis (UCP), Brazil
| | - Celestine N. Wanjalla
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Claude F Albritton
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- School of Graduate Studies, Meharry Medical College, Nashville, TN
| | - Sydney Jamison
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- School of Graduate Studies, Meharry Medical College, Nashville, TN
| | - Mert Demirci
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Sandra A. Murray
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Anthonya T. Cooper
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - George E Taffet
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Antentor O. Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Anilkumar K. Reddy
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
4
|
Marshall AG, Neikirk K, Afolabi J, Mwesigwa N, Shao B, Kirabo A, Reddy AK, Hinton A. Update on the Use of Pulse Wave Velocity to Measure Age-Related Vascular Changes. Curr Hypertens Rep 2024; 26:131-140. [PMID: 38159167 PMCID: PMC10955453 DOI: 10.1007/s11906-023-01285-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW Pulse wave velocity (PWV) is an important and well-established measure of arterial stiffness that is strongly associated with aging. Age-related alterations in the elastic properties and integrity of arterial walls can lead to cardiovascular disease. PWV measurements play an important role in the early detection of these changes, as well as other cardiovascular disease risk factors, such as hypertension. This review provides a comprehensive summary of the current knowledge of the effects of aging on arterial stiffness, as measured by PWV. RECENT FINDINGS This review highlights recent findings showing the applicability of PWV analysis for investigating heart failure, hypertension, and other cardiovascular diseases, as well as cerebrovascular diseases and Alzheimer's disease. It also discusses the clinical implications of utilizing PWV to monitor treatment outcomes, various challenges in implementing PWV assessment in clinical practice, and the development of new technologies, including machine learning and artificial intelligence, which may improve the usefulness of PWV measurements in the future. Measuring arterial stiffness through PWV remains an important technique to study aging, especially as the technology continues to evolve. There is a clear need to leverage PWV to identify interventions that mitigate age-related increases in PWV, potentially improving CVD outcomes and promoting healthy vascular aging.
Collapse
Affiliation(s)
- Andrea G Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Jeremiah Afolabi
- Department of Medicine, Vanderbilt University Medical Center, 750 Robinson Research Building, 2200 Pierce Ave, Nashville, TN, 37232-0615, USA
| | - Naome Mwesigwa
- Department of Medicine, Vanderbilt University Medical Center, 750 Robinson Research Building, 2200 Pierce Ave, Nashville, TN, 37232-0615, USA
| | - Bryanna Shao
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, 750 Robinson Research Building, 2200 Pierce Ave, Nashville, TN, 37232-0615, USA
| | - Anilkumar K Reddy
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
5
|
Ngiam JN, Liong TS, Pramotedham T, Sia CH, Jou E, Kong WKF, Poh KK. Left ventricular vortex formation time: emerging clinical applications and limitations. Singapore Med J 2023:389617. [PMID: 38037777 DOI: 10.4103/singaporemedj.smj-2022-132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Vortex formation during left ventricular diastolic filling may provide clinically useful insights into cardiac health. In recent years, there has been growing interest in the measurement of vortex formation time (VFT), especially because it is derived noninvasively. There are important applications of VFT in valvular heart disease, athletic physiology, heart failure and hypertrophic cardiomyopathy. The formation of the vortex as fluid propagates into the left ventricle from the left atrium is important for efficient fluid transport. Quantifying VFT may thus help in evaluating and understanding disease and pathophysiological processes.
Collapse
Affiliation(s)
| | - Tze Sian Liong
- Department of Medicine, National University Health System, Singapore
| | | | - Ching-Hui Sia
- Department of Medicine; Department of Cardiology, National University Heart Centre Singapore, National University Health System, Singapore
| | - Eric Jou
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - William Kok-Fai Kong
- Department of Medicine; Department of Cardiology, National University Heart Centre Singapore, National University Health System, Singapore
| | - Kian-Keong Poh
- Department of Medicine; Department of Cardiology, National University Heart Centre Singapore, National University Health System, Singapore
| |
Collapse
|
6
|
Zhang F, Xian D, Feng J, Ning L, Jiang T, Xu W, Liu Y, Zhao Q, Peng M. Causal relationship between Alzheimer's disease and cardiovascular disease: a bidirectional Mendelian randomization analysis. Aging (Albany NY) 2023; 15:9022-9040. [PMID: 37665672 PMCID: PMC10522384 DOI: 10.18632/aging.205013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023]
Abstract
Observational studies suggest that cardiovascular disease (CVD) increases the risk of developing Alzheimer's disease (AD). However, the causal relationship between the two is not clear. This study applied a two-sample bidirectional Mendelian randomization method to explore the causal relationship between CVD and AD. Genome-wide association study (GWAS) data from 46 datasets of European populations (21,982 cases of AD and 41,944 controls) were utilized to obtain genetic instrumental variables for AD. In addition, genetic instrumental variables for atrial fibrillation (AF), heart failure (HF), myocardial infarction (MI), coronary heart disease (CHD), angina pectoris (AP), and ischemic stroke (IS) (including large-artery atherosclerotic stroke [LAS] and cardioembolic stroke [CES]) were selected from GWAS data of European populations (P < 5E-8). The inverse variance weighting method was employed as the major Mendelian randomization analysis method. Genetically predicted AD odds ratios (OR) (1.06) (95% CI: 1.02-1.10, P = 0.003) were linked to higher AP analysis. A higher genetically predicted OR for CES (0.9) (95% CI 0.82-0.99, P = 0.02) was linked to a decreased AD risk. This Mendelian randomized study identified AD as a risk factor for AP. In addition, CES was related to a reduced incidence of AD. Therefore, these modifiable risk factors are crucial targets for preventing and treating AD.
Collapse
Affiliation(s)
- Fengjun Zhang
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dexian Xian
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Junchen Feng
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Luning Ning
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tianshou Jiang
- Department of Cardiovascular Medicine, Lacey City Hospital, Qingdao, China
| | - Wenchang Xu
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuan Liu
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qiong Zhao
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Min Peng
- Department of Traditional Chinese Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
7
|
Ahad MA, Kumaran KR, Ning T, Mansor NI, Effendy MA, Damodaran T, Lingam K, Wahab HA, Nordin N, Liao P, Müller CP, Hassan Z. Insights into the neuropathology of cerebral ischemia and its mechanisms. Rev Neurosci 2020; 31:521-538. [DOI: 10.1515/revneuro-2019-0099] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/09/2020] [Indexed: 11/15/2022]
Abstract
AbstractCerebral ischemia is a result of insufficient blood flow to the brain. It leads to limited supply of oxygen and other nutrients to meet metabolic demands. These phenomena lead to brain damage. There are two types of cerebral ischemia: focal and global ischemia. This condition has significant impact on patient’s health and health care system requirements. Animal models such as transient occlusion of the middle cerebral artery and permanent occlusion of extracranial vessels have been established to mimic the conditions of the respective type of cerebral ischemia and to further understand pathophysiological mechanisms of these ischemic conditions. It is important to understand the pathophysiology of cerebral ischemia in order to identify therapeutic strategies for prevention and treatment. Here, we review the neuropathologies that are caused by cerebral ischemia and discuss the mechanisms that occur in cerebral ischemia such as reduction of cerebral blood flow, hippocampal damage, white matter lesions, neuronal cell death, cholinergic dysfunction, excitotoxicity, calcium overload, cytotoxic oedema, a decline in adenosine triphosphate (ATP), malfunctioning of Na+/K+-ATPase, and the blood-brain barrier breakdown. Altogether, the information provided can be used to guide therapeutic strategies for cerebral ischemia.
Collapse
Affiliation(s)
- Mohamad Anuar Ahad
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Kesevan Rajah Kumaran
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Penang, Malaysia
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Tiang Ning
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Nur Izzati Mansor
- Medical Genetics Unit, Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | | | - Thenmoly Damodaran
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Kamilla Lingam
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Habibah Abdul Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
- USM-RIKEN Centre for Aging Science (URICAS), Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Norshariza Nordin
- Medical Genetics Unit, Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Ping Liao
- Calcium Signaling Laboratory, National Neuroscience Institute, Singapore 308433, Singapore
| | - Christian P. Müller
- Section of Addiction Medicine, Department of Psychiatry and Psychotherapy, University Clinic, Friedrich Alexander University Erlangen-Nuremberg, Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Penang, Malaysia
- USM-RIKEN Centre for Aging Science (URICAS), Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| |
Collapse
|
8
|
Yang M, Li C, Zhang Y, Ren J. Interrelationship between Alzheimer's disease and cardiac dysfunction: the brain-heart continuum? Acta Biochim Biophys Sin (Shanghai) 2020; 52:1-8. [PMID: 31897470 DOI: 10.1093/abbs/gmz115] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023] Open
Abstract
Dementia, a devastating neurological disorder commonly found in the elderly, is characterized by severe cognitive and memory impairment. Ample clinical and epidemiological evidence has depicted a close association between dementia and heart failure. While cerebral blood under perfusion and neurohormonal activation due to the dampened cardiac pump function contribute to the loss of nutrient supply and neuronal injury, Alzheimer's disease (AD), the most common type of dementia, also provokes cardiovascular function impairment, in particular impairment of diastolic function. Aggregation of amyloid-β proteins and mutations of Presenilin (PSEN) genes are believed to participate in the pathological changes in the heart although it is still debatable with regards to the pathological cue of cardiac anomalies in AD process. In consequence, reduced cerebral blood flow triggered by cardiac dysfunction further deteriorates vascular dementia and AD pathology. Patients with atrial fibrillation, heart failure, and other cardiac anomalies are at a higher risk for cognitive decline and dementia. Conclusion: Due to the increased incidence of dementia and cardiovascular diseases, the coexistence of the two will cause more threat to public health, warranting much more attention. Here, we will update recent reports on dementia, AD, and cardiovascular diseases and discuss the causal relationship between dementia and heart dysfunction.
Collapse
Affiliation(s)
- Mingjie Yang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 210032, China
| | - Congye Li
- Department of Cardiology, Xijing Hospital, the Air Force Military Medical University, Xi’an 710032, China
| | - Yingmei Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 210032, China
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 210032, China
| |
Collapse
|
9
|
Pagel PS, Dye L, Boettcher BT, Freed JK. Advanced Age Attenuates Left Ventricular Filling Efficiency Quantified Using Vortex Formation Time: A Study of Octogenarians With Normal Left Ventricular Systolic Function Undergoing Coronary Artery Surgery. J Cardiothorac Vasc Anesth 2018. [PMID: 29525195 DOI: 10.1053/j.jvca.2018.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Blood flow across the mitral valve during early left ventricular (LV) filling produces a 3-dimensional rotational fluid body, known as a vortex ring, that enhances LV filling efficiency. Diastolic dysfunction is common in elderly patients, but the influence of advanced age on vortex formation is unknown. The authors tested the hypothesis that advanced age is associated with a reduction in LV filling efficiency quantified using vortex formation time (VFT) in octogenarians undergoing coronary artery bypass graft (CABG) surgery. DESIGN Observational study. SETTING Veterans Affairs medical center. PARTICIPANTS After institutional review board approval, octogenarians (n = 7; 82 ± 2 year [mean ± standard deviation]; ejection fraction 56% ± 7%) without valve disease or atrial arrhythmias undergoing CABG were compared with a younger cohort (n = 7; 55 ± 6 year; ejection fraction 57% ± 7%) who were undergoing coronary revascularization. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS All patients were monitored using radial and pulmonary arterial catheters and transesophageal echocardiography. Peak early LV filling (E) and atrial systole (A) blood flow velocities and their corresponding velocity-time integrals were obtained using pulse-wave Doppler echocardiography to determine E/A, atrial filling fraction (β), and E wave deceleration time. Pulse-wave Doppler also was used to measure pulmonary venous blood flow during systole and diastole. Mitral valve diameter (D) was calculated as the average of major and minor axis lengths obtained in the midesophageal LV bicommissural and long-axis transesophageal echocardiography imaging planes, respectively. VFT was calculated as 4 × (1 - β) × SV/(πD3), where SV is the stroke volume measured using thermodilution. Systemic and pulmonary hemodynamics, LV diastolic function, and VFT were determined during steady-state conditions 30 minutes before cardiopulmonary bypass. A delayed relaxation pattern of LV filling (E/A 0.81 ± 0.16 v 1.29 ± 0.19, p = 0.00015; β 0.44 ± 0.05 v 0.35 ± 0.03, p = 0.0008; E wave deceleration time 294 ± 58 v 166 ± 28 ms, p < 0.0001; ratio of peak pulmonary venous systolic and diastolic blood flow velocity 1.42 ± 0.23 v 1.14 ± 0.20, p = 0.0255) was observed in octogenarians compared with younger patients. Mitral valve diameter was similar between groups (2.7 ± 0.2 and 2.6 ± 0.2 cm, respectively, in octogenarians v younger patients, p = 0.299). VFT was reduced in octogenarians compared with younger patients (3.0 ± 0.9 v 4.5 ± 1.2; p = 0.0171). An inverse correlation between age and VFT was shown using linear regression analysis (VFT = -0.0627 × age + 8.24; r2 = 0.408; p = 0.0139). CONCLUSION The results indicate that LV filling efficiency quantified using VFT is reduced in octogenarians compared with younger patients undergoing coronary artery bypass grafting.
Collapse
Affiliation(s)
- Paul S Pagel
- Anesthesia Service, Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI.
| | - Lonnie Dye
- Anesthesia Service, Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI
| | - Brent T Boettcher
- Anesthesia Service, Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI
| | - Julie K Freed
- Anesthesia Service, Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI
| |
Collapse
|
10
|
de la Torre JC. Cerebral Perfusion Enhancing Interventions: A New Strategy for the Prevention of Alzheimer Dementia. Brain Pathol 2018; 26:618-31. [PMID: 27324946 DOI: 10.1111/bpa.12405] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/29/2016] [Accepted: 05/04/2016] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular and cerebrovascular diseases are major risk factors in the development of cognitive impairment and Alzheimer's disease (AD). These cardio-cerebral disorders promote a variety of vascular risk factors which in the presence of advancing age are prone to markedly reduce cerebral perfusion and create a neuronal energy crisis. Long-term hypoperfusion of the brain evolves mainly from cardiac structural pathology and brain vascular insufficiency. Brain hypoperfusion in the elderly is strongly associated with the development of mild cognitive impairment (MCI) and both conditions are presumed to be precursors of Alzheimer dementia. A therapeutic target to prevent or treat MCI and consequently reduce the incidence of AD aims to elevate cerebral perfusion using novel pharmacological agents. As reviewed here, the experimental pharmaca include the use of Rho kinase inhibitors, neurometabolic energy boosters, sirtuins and vascular growth factors. In addition, a compelling new technique in laser medicine called photobiomodulation is reviewed. Photobiomodulation is based on the use of low level laser therapy to stimulate mitochondrial energy production non-invasively in nerve cells. The use of novel pharmaca and photobiomodulation may become important tools in the treatment or prevention of cognitive decline that can lead to dementia.
Collapse
|
11
|
Vetrano DL, Carfì A, Brandi V, L'Angiocola PD, Di Tella S, Cipriani MC, Antocicco M, Zuccalà G, Palmieri V, Silveri MC, Bernabei R, Onder G. Left ventricle diastolic function and cognitive performance in adults with Down syndrome. Int J Cardiol 2015; 203:816-8. [PMID: 26595792 DOI: 10.1016/j.ijcard.2015.11.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/05/2015] [Indexed: 10/22/2022]
Affiliation(s)
- Davide L Vetrano
- Department of Geriatrics, Orthopedics and Neurosciences, Catholic University of the Sacred Heart, Rome, Italy.
| | - Angelo Carfì
- Department of Geriatrics, Orthopedics and Neurosciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Vincenzo Brandi
- Department of Geriatrics, Orthopedics and Neurosciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Paolo D L'Angiocola
- Department of Cardiology, Department of Cardiology, "E. Profili" Hospital, Fabriano, Italy
| | - Sonia Di Tella
- Department of Geriatrics, Orthopedics and Neurosciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Maria Camilla Cipriani
- Department of Geriatrics, Orthopedics and Neurosciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Manuela Antocicco
- Department of Geriatrics, Orthopedics and Neurosciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Giuseppe Zuccalà
- Department of Geriatrics, Orthopedics and Neurosciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Vincenzo Palmieri
- Sports Medicine Unit, Catholic University of the Sacred Heart, Rome, Italy
| | - Maria Caterina Silveri
- Department of Geriatrics, Orthopedics and Neurosciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Roberto Bernabei
- Department of Geriatrics, Orthopedics and Neurosciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Graziano Onder
- Department of Geriatrics, Orthopedics and Neurosciences, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
12
|
Song Z, Borazjani I. The Role of Shape and Heart Rate on the Performance of the Left Ventricle. J Biomech Eng 2015; 137:114501. [PMID: 26312776 DOI: 10.1115/1.4031468] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Indexed: 11/08/2022]
Abstract
The left ventricle function is to pump the oxygenated blood through the circulatory system. Ejection fraction is the main noninvasive parameter for detecting heart disease (healthy >55%), and it is thought to be the main parameter affecting efficiency. However, the effects of other parameters on efficiency have yet to be investigated. We investigate the effect of heart rate and left ventricle shape by carrying out 3D numerical simulations of a left ventricle at different heart rates and perturbed geometries under constant, normal ejection fraction. The simulation using the immersed boundary method provide the 3D flow and pressure fields, which enable direct calculation of a new hemodynamic efficiency (H-efficiency) parameter, which does not depend on any reference pressure. The H-efficiency is defined as the ratio of flux of kinetic energy (useful power) to the total cardiac power into the left ventricle control volume. Our simulations show that H-efficiency is not that sensitive to heart rate but is maximized at around normal heart rate (72 bpm). Nevertheless, it is more sensitive to the shape of the left ventricle, which affects the H-efficiency by as much as 15% under constant ejection fraction.
Collapse
|
13
|
Affiliation(s)
- A E Roher
- Banner Sun Health Research Institute, Sun City, AZ, USA
| |
Collapse
|
14
|
Abstract
It has recently been proposed that heart failure is a risk factor for Alzheimer's disease. Decreased cerebral blood flow and neurohormonal activation due to heart failure may contribute to the dysfunction of the neurovascular unit and cause an energy crisis in neurons. This leads to the impaired clearance of amyloid beta and hyperphosphorylation of tau protein, resulting in the formation of amyloid beta plaques and neurofibrillary tangles. In this article, we will summarize the current understanding of the relationship between heart failure and Alzheimer's disease based on epidemiological studies, brain imaging research, pathological findings and the use of animal models. The importance of atherosclerosis, myocardial infarction, atrial fibrillation, blood pressure and valve disease as well as the effect of relevant medications will be discussed.
Collapse
Affiliation(s)
- P Cermakova
- Division for Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska InstitutetHuddinge, Sweden
- International Clinical Research Center and St. Anne's University HospitalBrno, Czech Republic
| | - M Eriksdotter
- Department of Geriatric Medicine, Karolinska University HospitalStockholm, Sweden
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska InstitutetStockholm, Sweden
| | - L H Lund
- Department of Cardiology, Karolinska University HospitalStockholm, Sweden
- Unit of Cardiology, Department of Medicine, Karolinska InstitutetStockholm, Sweden
| | - B Winblad
- Division for Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska InstitutetHuddinge, Sweden
- Department of Geriatric Medicine, Karolinska University HospitalStockholm, Sweden
| | - P Religa
- Department of Medicine, Center for Molecular Medicine, Karolinska InstitutetStockholm, Sweden
| | - D Religa
- Division for Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska InstitutetHuddinge, Sweden
- Department of Geriatric Medicine, Karolinska University HospitalStockholm, Sweden
| |
Collapse
|
15
|
Beach TG, Adler CH, Sue LI, Serrano G, Shill HA, Walker DG, Lue L, Roher AE, Dugger BN, Maarouf C, Birdsill AC, Intorcia A, Saxon-Labelle M, Pullen J, Scroggins A, Filon J, Scott S, Hoffman B, Garcia A, Caviness JN, Hentz JG, Driver-Dunckley E, Jacobson SA, Davis KJ, Belden CM, Long KE, Malek-Ahmadi M, Powell JJ, Gale LD, Nicholson LR, Caselli RJ, Woodruff BK, Rapscak SZ, Ahern GL, Shi J, Burke AD, Reiman EM, Sabbagh MN. Arizona Study of Aging and Neurodegenerative Disorders and Brain and Body Donation Program. Neuropathology 2015; 35:354-89. [PMID: 25619230 DOI: 10.1111/neup.12189] [Citation(s) in RCA: 356] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/11/2014] [Indexed: 12/13/2022]
Abstract
The Brain and Body Donation Program (BBDP) at Banner Sun Health Research Institute (http://www.brainandbodydonationprogram.org) started in 1987 with brain-only donations and currently has banked more than 1600 brains. More than 430 whole-body donations have been received since this service was commenced in 2005. The collective academic output of the BBDP is now described as the Arizona Study of Aging and Neurodegenerative Disorders (AZSAND). Most BBDP subjects are enrolled as cognitively normal volunteers residing in the retirement communities of metropolitan Phoenix, Arizona. Specific recruitment efforts are also directed at subjects with Alzheimer's disease, Parkinson's disease and cancer. The median age at death is 82. Subjects receive standardized general medical, neurological, neuropsychological and movement disorders assessments during life and more than 90% receive full pathological examinations by medically licensed pathologists after death. The Program has been funded through a combination of internal, federal and state of Arizona grants as well as user fees and pharmaceutical industry collaborations. Subsets of the Program are utilized by the US National Institute on Aging Arizona Alzheimer's Disease Core Center and the US National Institute of Neurological Disorders and Stroke National Brain and Tissue Resource for Parkinson's Disease and Related Disorders. Substantial funding has also been received from the Michael J. Fox Foundation for Parkinson's Research. The Program has made rapid autopsy a priority, with a 3.0-hour median post-mortem interval for the entire collection. The median RNA Integrity Number (RIN) for frozen brain and body tissue is 8.9 and 7.4, respectively. More than 2500 tissue requests have been served and currently about 200 are served annually. These requests have been made by more than 400 investigators located in 32 US states and 15 countries. Tissue from the BBDP has contributed to more than 350 publications and more than 200 grant-funded projects.
Collapse
Affiliation(s)
- Thomas G Beach
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | - Lucia I Sue
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Geidy Serrano
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Holly A Shill
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | - LihFen Lue
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Alex E Roher
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | - Chera Maarouf
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Alex C Birdsill
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | | | - Joel Pullen
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | - Jessica Filon
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Sarah Scott
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | - Angelica Garcia
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | | | | | | | - Kathryn J Davis
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | - Kathy E Long
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | | | - Lisa D Gale
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | | | | | | | | | - Jiong Shi
- Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Anna D Burke
- Banner Alzheimer Institute, Phoenix, Arizona, USA
| | | | | |
Collapse
|
16
|
Ampadu J, Morley JE. Heart failure and cognitive dysfunction. Int J Cardiol 2015; 178:12-23. [DOI: 10.1016/j.ijcard.2014.10.087] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 10/20/2014] [Indexed: 10/24/2022]
|
17
|
Çalık AN, Özcan KS, Yüksel G, Güngör B, Aruğarslan E, Varlibas F, Ekmekci A, Osmonov D, Tatlısu MA, Karaca M, Bolca O, Erdinler İ. Altered diastolic function and aortic stiffness in Alzheimer's disease. Clin Interv Aging 2014; 9:1115-21. [PMID: 25075180 PMCID: PMC4107181 DOI: 10.2147/cia.s63337] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Alzheimer’s disease (AD) is closely linked to cardiovascular risk factors. Methods Echocardiographic studies were performed, including left ventricular diastolic functions, left and right atrial conduction times, and arterial stiffness parameters, namely stiffness index, pressure-strain elastic modulus, and distensibility, on 29 patients with AD and 24 age-matched individuals with normal cognitive function. Results The peak mitral flow velocity of the early rapid filling wave (E) was lower, and the peak velocity of the late filling wave caused by atrial contraction (A), deceleration time of peak E velocity, and isovolumetric relaxation time were higher in the AD group. The early myocardial peak (Ea) velocity was significantly lower in AD patients, whereas the late diastolic (Aa) velocity and E/Ea ratio were similar between the two groups. In Alzheimer patients, stiffness index and pressure-strain elastic modulus were higher, and distensibility was significantly lower in the AD group compared to the control. Interatrial electromechanical delay was significantly longer in the AD group. Conclusion Our findings suggest that patients with AD are more likely to have diastolic dysfunction, higher atrial conduction times, and increased arterial stiffness compared to the controls of same sex and similar age.
Collapse
Affiliation(s)
- Ali Nazmi Çalık
- Department of Cardiology, Yozgat State Hospital, Yozgat, Turkey
| | - Kazım Serhan Özcan
- Department of Cardiology, Derince Training and Research Hospital, Kocaeli, Turkey
| | - Gülbün Yüksel
- Department of Neurology, Haydarpaşa Numune Training and Research Hospital, Istanbul, Turkey
| | - Barısş Güngör
- Department of Cardiology, Siyami Ersek Cardiovascular and Thoracic Surgery Center, Istanbul, Turkey
| | - Emre Aruğarslan
- Department of Cardiology, Siyami Ersek Cardiovascular and Thoracic Surgery Center, Istanbul, Turkey
| | - Figen Varlibas
- Department of Neurology, Haydarpaşa Numune Training and Research Hospital, Istanbul, Turkey
| | - Ahmet Ekmekci
- Department of Cardiology, Siyami Ersek Cardiovascular and Thoracic Surgery Center, Istanbul, Turkey
| | - Damirbek Osmonov
- Department of Cardiology, Siyami Ersek Cardiovascular and Thoracic Surgery Center, Istanbul, Turkey
| | - Mustafa Adem Tatlısu
- Department of Cardiology, Siyami Ersek Cardiovascular and Thoracic Surgery Center, Istanbul, Turkey
| | - Mehmet Karaca
- Department of Cardiology, Siyami Ersek Cardiovascular and Thoracic Surgery Center, Istanbul, Turkey
| | - Osman Bolca
- Department of Cardiology, Siyami Ersek Cardiovascular and Thoracic Surgery Center, Istanbul, Turkey
| | - İzzet Erdinler
- Department of Cardiology, Siyami Ersek Cardiovascular and Thoracic Surgery Center, Istanbul, Turkey
| |
Collapse
|
18
|
Monacelli F, Odetti P, Sartini M, Parodi A, Brunelli C, Rosa G. Cardioprotection and anticholinesterases in patients with Alzheimer's disease: time for reappraisal. Dement Geriatr Cogn Dis Extra 2014; 4:45-50. [PMID: 24711813 PMCID: PMC3977226 DOI: 10.1159/000357124] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background/Aim Traditional risk factors, like impaired transmitral flow in diastolic filling [vortex formation time (VFT) as echocardiographic parameter], contribute to Alzheimer's disease (AD). Moreover, we observed that acetylcholinesterase inhibitors provide a significant cardioprotection. We assessed the pathogenetic role of VFT as early cardiovascular risk factor in 23 AD patients and 24 controls. Results The results showed no statistical difference between the two groups, but the VFT values were significantly lower in nontreated AD patients, and higher value were observed in AD patients treated with anticholinesterases. Conclusions The results support the beneficial effects of anticholinesterases on the cardiovascular system of AD patients. Thus, the transition to evidence-based medicine and an in vivo model of cardiomyocytes might strengthen these results.
Collapse
Affiliation(s)
- Fiammetta Monacelli
- Sections of Geriatrics, Department of Internal Medicine and Medical Specialties (DiMI), Genoa, Italy
| | - Patrizio Odetti
- Sections of Geriatrics, Department of Internal Medicine and Medical Specialties (DiMI), Genoa, Italy
| | - Marina Sartini
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Antonello Parodi
- Sections of Cardiology, Department of Internal Medicine and Medical Specialties (DiMI), Genoa, Italy
| | - Claudio Brunelli
- Sections of Cardiology, Department of Internal Medicine and Medical Specialties (DiMI), Genoa, Italy
| | - Gianmarco Rosa
- Sections of Cardiology, Department of Internal Medicine and Medical Specialties (DiMI), Genoa, Italy
| |
Collapse
|
19
|
Abukhalil F, Bodhit A, Cai PY, Ansari S, Thenkabail S, Ganji S, Saravanapavan P, Chandra Shekhar C, Waters MF, Beaver TM, Shushrutha Hedna V. Atrial Fibrillation - A Common Ground for Neurology and Cardiology. J Atr Fibrillation 2013; 6:550. [PMID: 28496867 DOI: 10.4022/jafib.550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 11/10/2022]
Abstract
Atrial fibrillation (AF) has a huge impact on clinical stroke because it is the primary cause of cardio-embolism, which constitutes ~20% of all strokes. As a result, there is a great need to explore safer and more effective primary and secondary prophylactic agents. In this article, we discuss the overlapping issues pertaining to AF from both a neurology and cardiology standpoint. We focus on the dynamic interplay of neurovascular and cardiovascular diseases in relation to AF, traditional and novel risk factors for AF leading to stroke, impact of AF on cognitive decline, and current upstream medical and surgical options for embolism prophylaxis.
Collapse
|
20
|
Abstract
As life expectancy lengthens, dementia is becoming a significant human condition in terms of its prevalence and cost to society worldwide. It is important in that context to understand the preventable and treatable causes of dementia. This article exposes the link between dementia and heart disease in all its forms, including coronary artery disease, myocardial infarction, atrial fibrillation, valvular disease, and heart failure. This article also explores the cardiovascular risk factors and emphasizes that several of them are preventable and treatable. In addition to medical therapies, the lifestyle changes that may be useful in retarding the onset of dementia are also summarized.
Collapse
Affiliation(s)
- B Ng Justin
- Departments of Neuroscience and Psychology, McGill University, Montreal, QC, Canada
| | - Michele Turek
- Division of Cardiology, The Ottawa Hospital, Ottawa, ON, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Antoine M Hakim
- Division of Neurology, The Ottawa Hospital, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON, Canada
- Canadian Stroke Network, Ottawa, ON, Canada
| |
Collapse
|
21
|
Left ventricular flow analysis: recent advances in numerical methods and applications in cardiac ultrasound. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2013; 2013:395081. [PMID: 23690874 PMCID: PMC3652115 DOI: 10.1155/2013/395081] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 03/19/2013] [Indexed: 11/18/2022]
Abstract
The left ventricle (LV) pumps oxygenated blood from the lungs to the rest of the body through systemic circulation. The efficiency of such a pumping function is dependent on blood flow within the LV chamber. It is therefore crucial to accurately characterize LV hemodynamics. Improved understanding of LV hemodynamics is expected to provide important clinical diagnostic and prognostic information. We review the recent advances in numerical and experimental methods for characterizing LV flows and focus on analysis of intraventricular flow fields by echocardiographic particle image velocimetry (echo-PIV), due to its potential for broad and practical utility. Future research directions to advance patient-specific LV simulations include development of methods capable of resolving heart valves, higher temporal resolution, automated generation of three-dimensional (3D) geometry, and incorporating actual flow measurements into the numerical solution of the 3D cardiovascular fluid dynamics.
Collapse
|
22
|
Abstract
Alzheimer’s disease (AD), considered the commonest neurodegenerative cause of dementia, is associated with hallmark pathologies including extracellular amyloid-β protein (Aβ) deposition in extracellular senile plaques and vessels, and intraneuronal tau deposition as neurofibrillary tangles. Although AD is usually categorized as neurodegeneration distinct from cerebrovascular disease (CVD), studies have shown strong links between AD and CVD. There is evidence that vascular risk factors and CVD may accelerate Aβ 40-42 production/ aggregation/deposition and contribute to the pathology and symptomatology of AD. Aβ deposited along vessels also causes cerebral amyloid angiopathy. Amyloid imaging allows in vivo detection of AD pathology, opening the way for prevention and early treatment, if disease-modifying therapies in the pipeline show safety and efficacy. In this review, we review the role of vascular factors and Aβ, underlining that vascular risk factor management may be important for AD prevention and treatment.
Collapse
|
23
|
Cardiovascular risk factors promote brain hypoperfusion leading to cognitive decline and dementia. Cardiovasc Psychiatry Neurol 2012; 2012:367516. [PMID: 23243502 PMCID: PMC3518077 DOI: 10.1155/2012/367516] [Citation(s) in RCA: 281] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 10/30/2012] [Indexed: 11/18/2022] Open
Abstract
Heart disease is the major leading cause of death and disability in the world. Mainly affecting the elderly population, heart disease and its main outcome, cardiovascular disease, have become an important risk factor in the development of cognitive decline and Alzheimer's disease (AD). This paper examines the evidence linking chronic brain hypoperfusion induced by a variety of cardiovascular deficits in the development of cognitive impairment preceding AD. The evidence indicates a strong association between AD and cardiovascular risk factors, including ApoE(4), atrial fibrillation, thrombotic events, hypertension, hypotension, heart failure, high serum markers of inflammation, coronary artery disease, low cardiac index, and valvular pathology. In elderly people whose cerebral perfusion is already diminished by their advanced age, additional reduction of cerebral blood flow stemming from abnormalities in the heart-brain vascular loop ostensibly increases the probability of developing AD. Evidence also suggests that a neuronal energy crisis brought on by relentless brain hypoperfusion may be responsible for protein synthesis abnormalities that later result in the classic neurodegenerative lesions involving the formation of amyloid-beta plaques and neurofibrillary tangles. Insight into how cardiovascular risk factors can induce progressive cognitive impairment offers an enhanced understanding of the multifactorial pathophysiology characterizing AD and ways at preventing or managing the cardiovascular precursors of this dementia.
Collapse
|
24
|
Roher AE, Debbins JP, Malek-Ahmadi M, Chen K, Pipe JG, Maze S, Belden C, Maarouf CL, Thiyyagura P, Mo H, Hunter JM, Kokjohn TA, Walker DG, Kruchowsky JC, Belohlavek M, Sabbagh MN, Beach TG. Cerebral blood flow in Alzheimer's disease. Vasc Health Risk Manag 2012; 8:599-611. [PMID: 23109807 PMCID: PMC3481957 DOI: 10.2147/vhrm.s34874] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Alzheimer’s disease (AD) dementia is a consequence of heterogeneous and complex interactions of age-related neurodegeneration and vascular-associated pathologies. Evidence has accumulated that there is increased atherosclerosis/arteriosclerosis of the intracranial arteries in AD and that this may be additive or synergistic with respect to the generation of hypoxia/ischemia and cognitive dysfunction. The effectiveness of pharmacologic therapies and lifestyle modification in reducing cardiovascular disease has prompted a reconsideration of the roles that cardiovascular disease and cerebrovascular function play in the pathogenesis of dementia. Methods Using two-dimensional phase-contrast magnetic resonance imaging, we quantified cerebral blood flow within the internal carotid, basilar, and middle cerebral arteries in a group of individuals with mild to moderate AD (n = 8) and compared the results with those from a group of age-matched nondemented control (NDC) subjects (n = 9). Clinical and psychometric testing was performed on all individuals, as well as obtaining their magnetic resonance imaging-based hippocampal volumes. Results Our experiments reveal that total cerebral blood flow was 20% lower in the AD group than in the NDC group, and that these values were directly correlated with pulse pressure and cognitive measures. The AD group had a significantly lower pulse pressure (mean AD 48, mean NDC 71; P = 0.0004). A significant group difference was also observed in their hippocampal volumes. Composite z-scores for clinical, psychometric, hippocampal volume, and hemodynamic data differed between the AD and NDC subjects, with values in the former being significantly lower (t = 12.00, df = 1, P = 0.001) than in the latter. Conclusion These results indicate an association between brain hypoperfusion and the dementia of AD. Cardiovascular disease combined with brain hypoperfusion may participate in the pathogenesis/pathophysiology of neurodegenerative diseases. Future longitudinal and larger-scale confirmatory investigations measuring multidomain parameters are warranted.
Collapse
Affiliation(s)
- Alex E Roher
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, AZ 85351, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Stewart KC, Charonko JC, Niebel CL, Little WC, Vlachos PP. Left ventricular vortex formation is unaffected by diastolic impairment. Am J Physiol Heart Circ Physiol 2012; 303:H1255-62. [PMID: 22961866 DOI: 10.1152/ajpheart.00093.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Normal left ventricular (LV) filling occurs rapidly early in diastole caused by a progressive pressure gradient within the ventricle and with a low left atrial pressure. This normal diastolic function is altered in patients with heart failure. Such impairment of diastolic filling is manifested as an abrupt deceleration of the early filling wave velocity. Although variations within the early filling wave have been observed previously, the underlying hydrodynamic mechanisms are not well understood. Previously, it was proposed that the mitral annulus vortex ring formation time was the total duration of early diastolic filling and provided a measure of the efficiency of diastolic filling. However, we found that the favorable LV pressure difference driving early diastolic filling becomes zero simultaneously with the deceleration of the early filling wave propagation velocity and pinch-off of the LV vortex ring. Thus we calculated the vortex ring formation time using the duration of the early diastolic filling wave from its initiation to the time of the early filling wave propagation velocity deceleration when pinch-off occurs. This formation time does not vary with decreasing intraventricular pressure difference or with degree of diastolic dysfunction. Thus we conclude the vortex ring pinch-off occurs before the completion of early diastole, and its formation time remains invariant to changes of diastolic function.
Collapse
Affiliation(s)
- Kelley C Stewart
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | | | | | | | |
Collapse
|
26
|
Chen R, Zhao BW, Wang B, Tang HL, Li P, Pan M, Xu LL. Assessment of left ventricular hemodynamics and function of patients with uremia by vortex formation using vector flow mapping. Echocardiography 2012; 29:1081-90. [PMID: 22694735 DOI: 10.1111/j.1540-8175.2012.01737.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A novel echocardiographic method, vector flow mapping (VFM), acquires velocity vector from color Doppler velocity data. The purpose of this study was to evaluate whether VFM could provide useful information on intracardiac flow and helpful to evaluate left ventricular (LV) function. Thirty-eight patients with uremia undergoing hemodialysis and 30 healthy volunteers were enrolled. The maximum vector velocity, maximum diameter and duration of the intracardiac vortex were measured using VFM software during systole and diastole. The maximum vector velocity of the vortex and the peak velocities at the basal septum and lateral mitral annulus measured by tissue Doppler imaging (TDI) were correlated. The maximum diameter and duration of vortex formation were significantly higher in uremic patients compared with the control group during the ejection phase (40.6 ± 7.9 cm/sec vs. 28.1 ± 3.9 cm/sec; 297.1 ± 22.1 msec vs. 145.4 ± 19.3 msec, all P < 0.001). The maximal diameters of the vortex were higher in uremic patients compared with the control group during diastole (25.6 ± 3.4 mm vs. 16.4 ± 2.1 mm; 34.3 ± 3.1 mm vs. 26.8 ± 3.9 mm; 37.5 ± 2.4 mm vs. 20.9 ± 2.1 mm; all P < 0.001). The maximum vector velocities were lower in mid-diastole and late diastole (23.6 ± 2.3 cm/sec vs. 45.2 ± 3.7 cm/sec; 31.9 ± 2.9 cm/sec vs. 54.7 ± 3.2 cm/sec, all P < 0.001). There was a correlation between the maximum vector velocity of the vortex in mid-diastole and E'/A' at the septum and lateral mitral annulus (r = 0.70, r = 0.76, P < 0.001). Vortex can be utilized to provide intracardiac dynamic information using VFM and it may be a good supplement for evaluating LV function.
Collapse
Affiliation(s)
- Ran Chen
- Department of Diagnostic Ultrasound and Echocardiography, Sir Run Run Shaw Hospital, Zhejiang University College of Medicine and Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Morphological and pathological evolution of the brain microcirculation in aging and Alzheimer's disease. PLoS One 2012; 7:e36893. [PMID: 22615835 PMCID: PMC3353981 DOI: 10.1371/journal.pone.0036893] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 04/12/2012] [Indexed: 01/01/2023] Open
Abstract
Key pathological hallmarks of Alzheimer's disease (AD), including amyloid plaques, cerebral amyloid angiopathy (CAA) and neurofibrillary tangles do not completely account for cognitive impairment, therefore other factors such as cardiovascular and cerebrovascular pathologies, may contribute to AD. In order to elucidate the microvascular changes that contribute to aging and disease, direct neuropathological staining and immunohistochemistry, were used to quantify the structural integrity of the microvasculature and its innervation in three oldest-old cohorts: 1) nonagenarians with AD and a high amyloid plaque load; 2) nonagenarians with no dementia and a high amyloid plaque load; 3) nonagenarians without dementia or amyloid plaques. In addition, a non-demented (ND) group (average age 71 years) with no amyloid plaques was included for comparison. While gray matter thickness and overall brain mass were reduced in AD compared to ND control groups, overall capillary density was not different. However, degenerated string capillaries were elevated in AD, potentially suggesting greater microvascular "dysfunction" compared to ND groups. Intriguingly, apolipoprotein ε4 carriers had significantly higher string vessel counts relative to non-ε4 carriers. Taken together, these data suggest a concomitant loss of functional capillaries and brain volume in AD subjects. We also demonstrated a trend of decreasing vesicular acetylcholine transporter staining, a marker of cortical cholinergic afferents that contribute to arteriolar vasoregulation, in AD compared to ND control groups, suggesting impaired control of vasodilation in AD subjects. In addition, tyrosine hydroxylase, a marker of noradrenergic vascular innervation, was reduced which may also contribute to a loss of control of vasoconstriction. The data highlight the importance of the brain microcirculation in the pathogenesis and evolution of AD.
Collapse
|
28
|
Belohlavek M. Vortex formation time: an emerging echocardiographic index of left ventricular filling efficiency? Eur Heart J Cardiovasc Imaging 2012; 13:367-9. [PMID: 22271110 DOI: 10.1093/ejechocard/jer311] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
29
|
Poh KK, Lee LC, Shen L, Chong E, Tan YL, Chai P, Yeo TC, Wood MJ. Left ventricular fluid dynamics in heart failure: echocardiographic measurement and utilities of vortex formation time. Eur Heart J Cardiovasc Imaging 2011; 13:385-93. [DOI: 10.1093/ejechocard/jer288] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Maarouf CL, Daugs ID, Kokjohn TA, Walker DG, Hunter JM, Kruchowsky JC, Woltjer R, Kaye J, Castaño EM, Sabbagh MN, Beach TG, Roher AE. Alzheimer's disease and non-demented high pathology control nonagenarians: comparing and contrasting the biochemistry of cognitively successful aging. PLoS One 2011; 6:e27291. [PMID: 22087282 PMCID: PMC3210154 DOI: 10.1371/journal.pone.0027291] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 10/13/2011] [Indexed: 12/13/2022] Open
Abstract
The amyloid cascade hypothesis provides an economical mechanistic explanation for Alzheimer's disease (AD) dementia and correlated neuropathology. However, some nonagenarian individuals (high pathology controls, HPC) remain cognitively intact while enduring high amyloid plaque loads for decades. If amyloid accumulation is the prime instigator of neurotoxicity and dementia, specific protective mechanisms must enable these HPC to evade cognitive decline. We evaluated the neuropathological and biochemical differences existing between non-demented (ND)-HPC and an age-matched cohort with AD dementia. The ND-HPC selected for our study were clinically assessed as ND and possessed high amyloid plaque burdens. ELISA and Western blot analyses were used to quantify a group of proteins related to APP/Aβ/tau metabolism and other neurotrophic and inflammation-related molecules that have been found to be altered in neurodegenerative disorders and are pivotal to brain homeostasis and mental health. The molecules assumed to be critical in AD dementia, such as soluble or insoluble Aβ40, Aβ42 and tau were quantified by ELISA. Interestingly, only Aβ42 demonstrated a significant increase in ND-HPC when compared to the AD group. The vascular amyloid load which was not used in the selection of cases, was on the average almost 2-fold greater in AD than the ND-HPC, suggesting that a higher degree of microvascular dysfunction and perfusion compromise was present in the demented cohort. Neurofibrillary tangles were less frequent in the frontal cortices of ND-HPC. Biochemical findings included elevated vascular endothelial growth factor, apolipoprotein E and the neuroprotective factor S100B in ND-HPC, while anti-angiogenic pigment epithelium derived factor levels were lower. The lack of clear Aβ-related pathological/biochemical demarcation between AD and ND-HPC suggests that in addition to amyloid plaques other factors, such as neurofibrillary tangle density and vascular integrity, must play important roles in cognitive failure.
Collapse
Affiliation(s)
- Chera L. Maarouf
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Ian D. Daugs
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Tyler A. Kokjohn
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
- Department of Microbiology, Midwestern University, Glendale, Arizona, United States of America
| | - Douglas G. Walker
- Laboratory of Neuroinflammation, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Jesse M. Hunter
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Jane C. Kruchowsky
- Laboratory of Neuroinflammation, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Randy Woltjer
- Department of Pathology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jeffrey Kaye
- Layton Aging and Alzheimer's Disease Center, Department of Neurology, Oregon Health and Science University, United States of America
| | | | - Marwan N. Sabbagh
- Cleo Roberts Center for Clinical Research, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Thomas G. Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Alex E. Roher
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| |
Collapse
|
31
|
Kokjohn TA, Maarouf CL, Roher AE. Is Alzheimer's disease amyloidosis the result of a repair mechanism gone astray? Alzheimers Dement 2011; 8:574-83. [PMID: 22047632 DOI: 10.1016/j.jalz.2011.05.2429] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 05/17/2011] [Indexed: 01/21/2023]
Abstract
Here, we synthesize several lines of evidence supporting the hypothesis that at least one function of amyloid-β is to serve as a part of the acute response to brain hemodynamic disturbances intended to seal vascular leakage. Given the resilient and adhesive physicochemical properties of amyloid, an abluminal hemostatic repair system might be highly advantageous, if deployed on a limited and short-term basis, in young individuals. However, in the aged, inevitable cardiovascular dysfunction combined with brain microvascular lesions may yield global chronic hypoperfusion that may lead to continuous amyloid deposition and consequential negative effects on neuronal viability. A large body of experimental evidence supports the hypothesis of an amyloid-β rescue function gone astray. Preventing or inducing the removal of amyloid in Alzheimer's disease (AD) has been simultaneously successful and disappointing. Amyloid deposits clearly play major roles in AD, but they may not represent the preeminent factor in dementia pathogenesis. Successful application of AD preventative approaches may hinge on an accurate and comprehensive view of comorbidities, including cardiovascular disease, diabetes, and head trauma.
Collapse
Affiliation(s)
- Tyler A Kokjohn
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, AZ, USA
| | | | | |
Collapse
|
32
|
Roher AE, Garami Z, Tyas SL, Maarouf CL, Kokjohn TA, Belohlavek M, Vedders LJ, Connor D, Sabbagh MN, Beach TG, Emmerling MR. Transcranial doppler ultrasound blood flow velocity and pulsatility index as systemic indicators for Alzheimer's disease. Alzheimers Dement 2011; 7:445-55. [PMID: 21388892 PMCID: PMC3117072 DOI: 10.1016/j.jalz.2010.09.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 06/30/2010] [Accepted: 09/21/2010] [Indexed: 12/17/2022]
Abstract
BACKGROUND Multiple lines of evidence suggest that cardiovascular co-morbidities hasten the onset of Alzheimer's disease (AD) or accelerate its course. METHODS To evaluate the utility of cerebral vascular physical function and/or condition parameters as potential systemic indicators of AD, transcranial Doppler (TCD) ultrasound was used to assess cerebral blood flow and vascular resistance of the 16 arterial segments comprising the circle of Willis and its major tributaries. RESULTS Our study showed that decreased arterial mean flow velocity and increased pulsatility index are associated with a clinical diagnosis of presumptive AD. Cerebral blood flow impairment shown by these parameters reflects the global hemodynamic and structural consequences of a multifaceted disease process yielding diffuse congestive microvascular pathology, increased arterial rigidity, and decreased arterial compliance, combined with putative age-associated cardiovascular output declines. CONCLUSIONS TCD evaluation offers direct physical confirmation of brain perfusion impairment and might ultimately provide a convenient and a noninvasive means to assess the efficacy of medical interventions on cerebral blood flow or reveal incipient AD. In the near term, TCD-based direct assessments of brain perfusion might offer the prospect of preventing or mitigating AD simply by revealing patients who would benefit from interventions to improve circulatory system function.
Collapse
Affiliation(s)
- Alex E Roher
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, AZ, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|