1
|
Al-Ali H, Baig A, Alkhanjari RR, Murtaza ZF, Alhajeri MM, Elbahrawi R, Abdukadir A, Bhamidimarri PM, Kashir J, Hamdan H. Septins as key players in spermatogenesis, fertilisation and pre-implantation embryogenic cytoplasmic dynamics. Cell Commun Signal 2024; 22:523. [PMID: 39468561 PMCID: PMC11514797 DOI: 10.1186/s12964-024-01889-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
Septins are a family of cytokinesis-related proteins involved in regulating cytoskeletal design, cell morphology, and tissue morphogenesis. Apart from cytokinesis, as a fourth component of cytoskeleton, septins aid in forming scaffolds, vesicle sorting and membrane stability. They are also known to be involved in the regulation of intracellular calcium (Ca2+) via the STIM/Orai complex. Infertility affects ~ 15% of couples globally, while male infertility affects ~ 7% of men. Global pregnancy and live birth rates following fertility treatment remain relatively low, while there has been an observable decline in male fertility parameters over the past 60 years. Low fertility treatment success can be attributed to poor embryonic development, poor sperm parameters and fertilisation defects. While studies from the past few years have provided evidence for the role of septins in fertility related processes, the functional role of septins and its related complexes in cellular processes such as oocyte activation, fertilization, and sperm maturation are not completely understood. This review summarizes the available knowledge on the role of septins in spermatogenesis and oocyte activation via Ca2+ regulation, and cytoskeletal dynamics throughout pre-implantation embryonic development. We aim to identify the currently less known mechanisms by which septins regulate these immensely important mechanisms with a view of identifying areas of investigation that would benefit our understanding of cell and reproductive biology, but also provide potential avenues to improve current methods of fertility treatment.
Collapse
Affiliation(s)
- Hana Al-Ali
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Amna Baig
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Rayyah R Alkhanjari
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Zoha F Murtaza
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Maitha M Alhajeri
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Rawdah Elbahrawi
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Azhar Abdukadir
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Poorna Manasa Bhamidimarri
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
| | - Junaid Kashir
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, 127788, United Arab Emirates.
- Center for Biotechnology, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
| | - Hamdan Hamdan
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, 127788, United Arab Emirates.
| |
Collapse
|
2
|
Szabó L, Telek A, Fodor J, Dobrosi N, Dócs K, Hegyi Z, Gönczi M, Csernoch L, Dienes B. Reduced Expression of Septin7 Hinders Skeletal Muscle Regeneration. Int J Mol Sci 2023; 24:13536. [PMID: 37686339 PMCID: PMC10487768 DOI: 10.3390/ijms241713536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Septins are considered the fourth component of the cytoskeleton with the septin7 isoform playing a critical role in the formation of diffusion barriers in phospholipid bilayers and intra- and extracellular scaffolds. While its importance has already been confirmed in different intracellular processes, very little is known about its role in skeletal muscle. Muscle regeneration was studied in a Sept7 conditional knock-down mouse model to prove the possible role of septin7 in this process. Sterile inflammation in skeletal muscle was induced which was followed by regeneration resulting in the upregulation of septin7 expression. Partial knock-down of Sept7 resulted in an increased number of inflammatory cells and myofibers containing central nuclei. Taken together, our data suggest that partial knock-down of Sept7 hinders the kinetics of muscle regeneration, indicating its crucial role in skeletal muscle functions.
Collapse
Affiliation(s)
- László Szabó
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Cell Physiology Research Group, University of Debrecen, 4032 Debrecen, Hungary
| | - Andrea Telek
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - János Fodor
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Nóra Dobrosi
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Cell Physiology Research Group, University of Debrecen, 4032 Debrecen, Hungary
| | - Klaudia Dócs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Zoltán Hegyi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Mónika Gönczi
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Cell Physiology Research Group, University of Debrecen, 4032 Debrecen, Hungary
| | - László Csernoch
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Cell Physiology Research Group, University of Debrecen, 4032 Debrecen, Hungary
| | - Beatrix Dienes
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
3
|
Vickram AS, Anbarasu K, Jeyanthi P, Gulothungan G, Nanmaran R, Thanigaivel S, Sridharan TB, Rohini K. Identification and Structure Prediction of Human Septin-4 as a Biomarker for Diagnosis of Asthenozoospermic Infertile Patients-Critical Finding Toward Personalized Medicine. Front Med (Lausanne) 2021; 8:723019. [PMID: 34926486 PMCID: PMC8677696 DOI: 10.3389/fmed.2021.723019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/25/2021] [Indexed: 11/22/2022] Open
Abstract
Semen parameters are been found as a key factor to evaluate the count and morphology in the given semen sample. The deep knowledge of male infertility will unravel with semen parameters correlated with molecular and biochemical parameters. The current research study is to identify the motility associated protein and its structure through the in-silico approach. Semen samples were collected and initial analysis including semen parameters was analyzed by using the World Health Organization protocol. Semen biochemical parameters, namely, seminal plasma protein concentration, fructose content, and glucosidase content were calculated and evaluated for correlation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) were carried out for identification of Septin-4 presence in the semen sample. Mascot search was done for protein conformation and in-silico characterization of Septin-4 by structural modeling in Iterative Threading Assembly Refinement (I-TASSER). Twenty-five nanoseconds molecular dynamics (MD) simulations results showed the stable nature of Septin-4 in the dynamic system. Overall, our results showed the presence of motility-associated protein in normospermia and control samples and not in the case of asthenospermia and oligoasthenospermia. Molecular techniques characterized the presence of Septin-4 and as a novel biomarker for infertility diagnosis.
Collapse
Affiliation(s)
- A S Vickram
- Department of Biotechnology, Saveetha School of Engineering (SSE), SIMATS, Chennai, India
| | - K Anbarasu
- Department of Bioinformatics, Saveetha School of Engineering (SSE), SIMATS, Chennai, India
| | - Palanivelu Jeyanthi
- Department of Biotechnology, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, India
| | - G Gulothungan
- Department of Biomedical Engineering, Saveetha School of Engineering (SSE), SIMATS, Chennai, India
| | - R Nanmaran
- Department of Biomedical Engineering, Saveetha School of Engineering (SSE), SIMATS, Chennai, India
| | - S Thanigaivel
- Department of Biotechnology, Saveetha School of Engineering (SSE), SIMATS, Chennai, India
| | - T B Sridharan
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, India
| | - Karunakaran Rohini
- Unit of Biochemistry, Faculty of Medicine, AIMST University, Bedong, Malaysia
| |
Collapse
|
4
|
Zaatri A, Perry JA, Maddox AS. Septins and a formin have distinct functions in anaphase chiral cortical rotation in the Caenorhabditis elegans zygote. Mol Biol Cell 2021; 32:1283-1292. [PMID: 34010018 PMCID: PMC8351551 DOI: 10.1091/mbc.e20-09-0576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Many cells and tissues exhibit chirality that stems from the chirality of proteins and polymers. In the Caenorhabditis elegans zygote, actomyosin contractility drives chiral rotation of the entire cortex circumferentially around the division plane during anaphase. How contractility is translated to cell-scale chirality, and what dictates handedness, are unknown. Septins are candidate contributors to cell-scale chirality because they anchor and cross-link the actomyosin cytoskeleton. We report that septins are required for anaphase cortical rotation. In contrast, the formin CYK-1, which we found to be enriched in the posterior in early anaphase, is not required for cortical rotation but contributes to its chirality. Simultaneous loss of septin and CYK-1 function led to abnormal and often reversed cortical rotation. Our results suggest that anaphase contractility leads to chiral rotation by releasing torsional stress generated during formin-based polymerization, which is polarized along the cell anterior–posterior axis and which accumulates due to actomyosin network connectivity. Our findings shed light on the molecular and physical bases for cellular chirality in the C. elegans zygote. We also identify conditions in which chiral rotation fails but animals are developmentally viable, opening avenues for future work on the relationship between early embryonic cellular chirality and animal body plan.
Collapse
Affiliation(s)
- Adhham Zaatri
- Department of Biology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599
| | - Jenna A Perry
- Department of Biology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599
| | - Amy Shaub Maddox
- Department of Biology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
5
|
Chen YC, Tsai YH, Wang CC, Liu SF, Chen TW, Fang WF, Lee CP, Hsu PY, Chao TY, Wu CC, Wei YF, Chang HC, Tsen CC, Chang YP, Lin MC. Epigenome-wide association study on asthma and chronic obstructive pulmonary disease overlap reveals aberrant DNA methylations related to clinical phenotypes. Sci Rep 2021; 11:5022. [PMID: 33658578 PMCID: PMC7930096 DOI: 10.1038/s41598-021-83185-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/06/2021] [Indexed: 12/15/2022] Open
Abstract
We hypothesized that epigenetics is a link between smoking/allergen exposures and the development of Asthma and chronic obstructive pulmonary disease (ACO). A total of 75 of 228 COPD patients were identified as ACO, which was independently associated with increased exacerbations. Microarray analysis identified 404 differentially methylated loci (DML) in ACO patients, and 6575 DML in those with rapid lung function decline in a discovery cohort. In the validation cohort, ACO patients had hypermethylated PDE9A (+ 30,088)/ZNF323 (− 296), and hypomethylated SEPT8 (− 47) genes as compared with either pure COPD patients or healthy non-smokers. Hypermethylated TIGIT (− 173) gene and hypomethylated CYSLTR1 (+ 348)/CCDC88C (+ 125,722)/ADORA2B (+ 1339) were associated with severe airflow limitation, while hypomethylated IFRD1 (− 515) gene with frequent exacerbation in all the COPD patients. Hypermethylated ZNF323 (− 296) / MPV17L (+ 194) and hypomethylated PTPRN2 (+ 10,000) genes were associated with rapid lung function decline. In vitro cigarette smoke extract and ovalbumin concurrent exposure resulted in specific DNA methylation changes of the MPV17L / ZNF323 genes, while 5-aza-2′-deoxycytidine treatment reversed promoter hypermethylation-mediated MPV17L under-expression accompanied with reduced apoptosis and decreased generation of reactive oxygen species. Aberrant DNA methylations may constitute a determinant for ACO, and provide a biomarker of airflow limitation, exacerbation, and lung function decline.
Collapse
Affiliation(s)
- Yung-Che Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Niao-Sung District, 123, Ta-Pei Rd, Kaohsiung, 83301, Taiwan. .,Medical Department, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Ying-Huang Tsai
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Niao-Sung District, 123, Ta-Pei Rd, Kaohsiung, 83301, Taiwan
| | - Chin-Chou Wang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Niao-Sung District, 123, Ta-Pei Rd, Kaohsiung, 83301, Taiwan.,Chang Gung University of Science and Technology, Chia-Yi, Taiwan
| | - Shih-Feng Liu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Niao-Sung District, 123, Ta-Pei Rd, Kaohsiung, 83301, Taiwan.,Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ting-Wen Chen
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Bioinformatics Center, Chang Gung University, Taoyuan, Taiwan.,Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, 30068, Taiwan
| | - Wen-Feng Fang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Niao-Sung District, 123, Ta-Pei Rd, Kaohsiung, 83301, Taiwan.,Chang Gung University of Science and Technology, Chia-Yi, Taiwan
| | - Chiu-Ping Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Niao-Sung District, 123, Ta-Pei Rd, Kaohsiung, 83301, Taiwan
| | - Po-Yuan Hsu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Niao-Sung District, 123, Ta-Pei Rd, Kaohsiung, 83301, Taiwan
| | - Tung-Ying Chao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Niao-Sung District, 123, Ta-Pei Rd, Kaohsiung, 83301, Taiwan
| | - Chao-Chien Wu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Niao-Sung District, 123, Ta-Pei Rd, Kaohsiung, 83301, Taiwan
| | - Yu-Feng Wei
- Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Huang-Chih Chang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Niao-Sung District, 123, Ta-Pei Rd, Kaohsiung, 83301, Taiwan
| | - Chia-Cheng Tsen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Niao-Sung District, 123, Ta-Pei Rd, Kaohsiung, 83301, Taiwan
| | - Yu-Ping Chang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Niao-Sung District, 123, Ta-Pei Rd, Kaohsiung, 83301, Taiwan
| | - Meng-Chih Lin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Niao-Sung District, 123, Ta-Pei Rd, Kaohsiung, 83301, Taiwan. .,Medical Department, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | | |
Collapse
|
6
|
Septins in Infections: Focus on Viruses. Pathogens 2021; 10:pathogens10030278. [PMID: 33801245 PMCID: PMC8001386 DOI: 10.3390/pathogens10030278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/17/2021] [Accepted: 02/25/2021] [Indexed: 11/17/2022] Open
Abstract
Human septins comprise a family of 13 genes that encode conserved GTP-binding proteins. They form nonpolar complexes, which assemble into higher-order structures, such as bundles, scaffolding structures, or rings. Septins are counted among the cytoskeletal elements. They interact with the actin and microtubule networks and can bind to membranes. Many cellular functions with septin participation have been described in the literature, including cytokinesis, motility, forming of scaffolding platforms or lateral diffusion barriers, vesicle transport, exocytosis, and recognition of micron-scale curvature. Septin dysfunction has been implicated in diverse human pathologies, including neurodegeneration and tumorigenesis. Moreover, septins are thought to affect the outcome of host–microbe interactions. Implication of septins has been demonstrated in fungal, bacterial, and viral infections. Knowledge on the precise function of a particular septin in the different steps of the virus infection and replication cycle is still limited. Published data for vaccinia virus (VACV), hepatitis C virus (HCV), influenza A virus (H1N1 and H5N1), human herpesvirus 8 (HHV-8), and Zika virus (ZIKV), all of major concern for public health, will be discussed here.
Collapse
|
7
|
Risinger AL, Du L. Targeting and extending the eukaryotic druggable genome with natural products: cytoskeletal targets of natural products. Nat Prod Rep 2020; 37:634-652. [PMID: 31764930 PMCID: PMC7797185 DOI: 10.1039/c9np00053d] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: 2014-2019We review recent progress on natural products that target cytoskeletal components, including microtubules, actin, intermediate filaments, and septins and highlight their demonstrated and potential utility in the treatment of human disease. The anticancer efficacy of microtubule targeted agents identified from plants, microbes, and marine organisms is well documented. We highlight new microtubule targeted agents currently in clinical evaluations for the treatment of drug resistant cancers and the accumulating evidence that the anticancer efficacy of these agents is not solely due to their antimitotic effects. Indeed, the effects of microtubule targeted agents on interphase microtubules are leading to their potential for more mechanistically guided use in cancers as well as neurological disease. The discussion of these agents as more targeted drugs also prompts a reevaluation of our thinking about natural products that target other components of the cytoskeleton. For instance, actin active natural products are largely considered chemical probes and non-selective toxins. However, studies utilizing these probes have uncovered aspects of actin biology that can be more specifically targeted to potentially treat cancer, neurological disorders, and infectious disease. Compounds that target intermediate filaments and septins are understudied, but their continued discovery and mechanistic evaluations have implications for numerous therapeutic indications.
Collapse
Affiliation(s)
- April L Risinger
- The University of Texas Health Science Center at San Antonio, Department of Pharmacology, 7703 Floyd Curl Drive, San Antonio, Texas 78229, USA.
| | | |
Collapse
|