1
|
Sharma H, Kim W, Oh S, Kim D, Lee S, Park S, Oh J, Park S, Kim J. Ultra-tiny-scale technology for engineering human ear therapeutics. Biofabrication 2025; 17:032003. [PMID: 40300614 DOI: 10.1088/1758-5090/add210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 04/29/2025] [Indexed: 05/01/2025]
Abstract
Ultra-tiny-scale technology representing engineered micro- and nano-scale materials has gained considerable attention for a wide range of applications, including hearing restoration. The advent of hearing loss and its recovery has been the topic of intense discussion since many decades. Although conventional treatments partially support hearing recovery, they present certain limitations such as subsequent immune response and donor site morbidity leading to even worsened sensory disturbances. Microscale- and nanoscale-based approaches such as tissue engineering, nanoparticle-assisted drug delivery systems, and micro/nanofabrication-aided auditory stimulations have been shown to play an efficient role in recovery from hearing disorders. In particular, the introduction of different biomaterials and biopolymers (natural and synthetic) with influential topographical cues and excellent biocompatibility has been found to conveniently bypass previous challenges posed by rigid human ear structures and provided a new path for improved and advanced hearing-recovery approaches. This review is focused on the development of micro/nanoengineering-based hearing recovery therapeutics and their significant impact on the future of hearing research. It discusses the physiological functions associated with the human ear and the mechanism underlying distinct hearing loss disorders as well as highlights various engineered ultra-tiny-scale-assisted strategies for developing advanced hearing therapeutics. Finally, we deliberate on commercialization aspect and future perspectives of implementing micro/nanotechnologies for hearing restoration platforms.
Collapse
Affiliation(s)
- Harshita Sharma
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Woochan Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sejong Oh
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dream Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Shinyull Lee
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sangbae Park
- Department of Biosystems Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jooseon Oh
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sunho Park
- Department of Bio-Industrial Machinery Engineering, Pusan National University, Miryang-si 50463, Republic of Korea
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
- Institute of Nano-Stem Cells Therapeutics, NANOBIOSYSTEM Co., Ltd, Gwangju 61008, Republic of Korea
| |
Collapse
|
2
|
Ding D, Manohar S, Kador PF, Salvi R. Multifunctional redox modulator prevents blast-induced loss of cochlear and vestibular hair cells and auditory spiral ganglion neurons. Sci Rep 2024; 14:15296. [PMID: 38961203 PMCID: PMC11222375 DOI: 10.1038/s41598-024-66406-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024] Open
Abstract
Blast wave exposure, a leading cause of hearing loss and balance dysfunction among military personnel, arises primarily from direct mechanical damage to the mechanosensory hair cells and supporting structures or indirectly through excessive oxidative stress. We previously reported that HK-2, an orally active, multifunctional redox modulator (MFRM), was highly effective in reducing both hearing loss and hair cells loss in rats exposed to a moderate intensity workday noise that likely damages the cochlea primarily from oxidative stress versus direct mechanical trauma. To determine if HK-2 could also protect cochlear and vestibular cells from damage caused primarily from direct blast-induced mechanical trauma versus oxidative stress, we exposed rats to six blasts of 186 dB peak SPL. The rats were divided into four groups: (B) blast alone, (BEP) blast plus earplugs, (BHK-2) blast plus HK-2 and (BEPHK-2) blast plus earplugs plus HK-2. HK-2 was orally administered at 50 mg/kg/d from 7-days before to 30-day after the blast exposure. Cochlear and vestibular tissues were harvested 60-d post-exposure and evaluated for loss of outer hair cells (OHC), inner hair cells (IHC), auditory nerve fibers (ANF), spiral ganglion neurons (SGN) and vestibular hair cells in the saccule, utricle and semicircular canals. In the untreated blast-exposed group (B), massive losses occurred to OHC, IHC, ANF, SGN and only the vestibular hair cells in the striola region of the saccule. In contrast, rats treated with HK-2 (BHK-2) sustained significantly less OHC (67%) and IHC (57%) loss compared to the B group. OHC and IHC losses were smallest in the BEPHK-2 group, but not significantly different from the BEP group indicating lack of protective synergy between EP and HK-2. There was no loss of ANF, SGN or saccular hair cells in the BHK-2, BEP and BEPHK-2 groups. Thus, HK-2 not only significantly reduced OHC and IHC damage, but completely prevented loss of ANF, SGN and saccule hair cells. The powerful protective effects of this oral MFRM make HK-2 an extremely promising candidate for human clinical trials.
Collapse
Affiliation(s)
- Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA
| | | | | | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA.
| |
Collapse
|
3
|
Paik CB, Pei M, Oghalai JS. Review of blast noise and the auditory system. Hear Res 2022; 425:108459. [PMID: 35181171 PMCID: PMC9357863 DOI: 10.1016/j.heares.2022.108459] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 11/22/2022]
Abstract
The auditory system is particularly vulnerable to blast injury due to the ear's role as a highly sensitive pressure transducer. Over the past several decades, studies have used a variety of animal models and experimental procedures to recreate blast-induced acoustic trauma. Given the developing nature of this field and our incomplete understanding of molecular mechanisms underlying blast-related auditory disturbances, an updated discussion about these studies is warranted. Here, we comprehensively review well-established blast-related auditory pathology including tympanic membrane perforation and hair cell loss. In addition, we discuss important mechanistic studies that aim to bridge gaps in our current understanding of the molecular and microstructural events underlying blast-induced cochlear, auditory nerve, brainstem, and central auditory system damage. Key findings from the recent literature include the association between endolymphatic hydrops and cochlear synaptic loss, blast-induced neuroinflammatory markers in the peripheral and central auditory system, and therapeutic approaches targeting biochemical markers of blast injury. We conclude that blast is an extreme form of noise exposure. Blast waves produce cochlear damage that appears similar to, but more extreme than, the standard noise exposure protocols used in auditory research. However, experimental variations in studies of blast-induced acoustic trauma make it challenging to compare and interpret data across studies.
Collapse
Affiliation(s)
- Connie B Paik
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA USA
| | - Michelle Pei
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA USA
| | - John S Oghalai
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA USA.
| |
Collapse
|
4
|
Huang J, Teh BM, Xu Z, Yuan Z, Zhou C, Shi Y, Shen Y. The possible mechanism of Hippophae fructus oil applied in tympanic membrane repair identified based on network pharmacology and molecular docking. J Clin Lab Anal 2022; 36:e24157. [PMID: 34859918 PMCID: PMC8761429 DOI: 10.1002/jcla.24157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE This study aimed to explore the mechanisms of Hippophae fructus oil (HFO) in the treatment of tympanic membrane (TM) perforation through network pharmacology-based identification. METHODS The compounds and related targets of HFO were extracted from the TCMSP database, and disease information was obtained from the OMIM, GeneCards, PharmGkb, TTD, and DrugBank databases. A Venn diagram was generated to show the common targets of HFO and TM, and GO and KEGG analyses were performed to explore the potential biological processes and signaling pathways. The PPI network and core gene subnetwork were constructed using the STRING database and Cytoscape software. A molecular docking analysis was also conducted to simulate the combination of compounds and gene proteins. RESULTS A total of 33 compounds and their related targets were obtained from the TCMSP database. After screening the 393 TM-related targets, 21 compounds and 22 gene proteins were selected to establish the network diagram. GO and KEGG enrichment analyses revealed that HFO may promote TM healing by influencing cellular oxidative stress and related signaling pathways. A critical subnetwork was obtained by analyzing the PPI network with nine core genes: CASP3, MMP2, IL1B, TP53, EGFR, CXCL8, ESR1, PTGS2, and IL6. In addition, a molecular docking analysis revealed that quercetin strongly binds the core proteins. CONCLUSION According to the analysis, HFO can be utilized to repair perforations by influencing cellular oxidative stress. Quercetin is one of the active compounds that potentially plays an important role in TM regeneration by influencing 17 gene proteins.
Collapse
Affiliation(s)
- Juntao Huang
- Department of Otolaryngology Head and Neck SurgeryNingbo Medical Center (Ningbo Lihuili Hospital)The Affiliated Lihuili Hospital of Ningbo UniversityNingboChina
- School of MedicineNingbo UniversityNingboChina
| | - Bing Mei Teh
- Department of Ear Nose and Throat, Head and Neck SurgeryEastern HealthBox HillVictoriaAustralia
- Department of Otolaryngology, Head and Neck SurgeryMonash HealthClaytonVictoriaAustralia
- Faculty of Medicine, Nursing and Health SciencesMonash UniversityClaytonVictoriaAustralia
| | - Ziqian Xu
- Department of DermatologyShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhechen Yuan
- Department of Otolaryngology Head and Neck SurgeryNingbo Medical Center (Ningbo Lihuili Hospital)The Affiliated Lihuili Hospital of Ningbo UniversityNingboChina
- School of MedicineNingbo UniversityNingboChina
| | - Chongchang Zhou
- Department of Otolaryngology Head and Neck SurgeryNingbo Medical Center (Ningbo Lihuili Hospital)The Affiliated Lihuili Hospital of Ningbo UniversityNingboChina
- School of MedicineNingbo UniversityNingboChina
| | - Yunbin Shi
- Department of Otolaryngology Head and Neck SurgeryNingbo Medical Center (Ningbo Lihuili Hospital)The Affiliated Lihuili Hospital of Ningbo UniversityNingboChina
- School of MedicineNingbo UniversityNingboChina
| | - Yi Shen
- Department of Otolaryngology Head and Neck SurgeryNingbo Medical Center (Ningbo Lihuili Hospital)The Affiliated Lihuili Hospital of Ningbo UniversityNingboChina
- School of MedicineNingbo UniversityNingboChina
| |
Collapse
|
5
|
Ríos JD, Hughes CK, Lally J, Wienandt N, Esquivel C, Serhan CN, Weitzel EK. Neuroprotectin D1 Attenuates Blast Overpressure Induced Reactive Microglial Cells in the Cochlea. Laryngoscope 2021; 131:E2018-E2025. [PMID: 33427310 DOI: 10.1002/lary.29337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE/HYPOTHESIS We examined a neuroinflammatory response associated with glial activation in the cochlea exposed to blast overpressure and evaluated the potential therapeutic efficacy of specialized pro-resolving mediators such as neuroprotectin D1, NPD1; (10R, 17S-dihydroxy-4Z, 7Z, 11E, 13E, 15Z, 19Z-docosahexaenoic acid) in a rodent blast-induced auditory injury model. STUDY DESIGN Animal Research. METHODS A compressed-air driven shock tube was used to expose anesthetized adult male Long-Evan rats to shock waves simulating an open-field blast exposure. Approximately 30 minutes after blast exposure, rats were treated with NPD1 (100 ng/kg body wt.) or vehicle delivered intravenously via tail vein injection. Rats were then euthanized 48 hours after blast exposure. Unexposed rats were included as controls. Tissue sections containing both middle and inner ear were prepared with hematoxylin-eosin staining to elucidate histopathological changes associated with blast exposure. Cochlear tissues were evaluated for relative expression of ionized calcium-binding adaptor 1 (Iba1), as an indicator of microglial activation by immunohistochemistry and western blot analyses. RESULTS Our animal model resulted in an acute injury mechanism manifested by damage to the tympanic membrane, hemorrhage, infiltration of inflammatory cells, and increased expression of Iba1 protein. Moreover, therapeutic intervention with NPD1 significantly reduced Iba1 expression in the cochlea, suggesting a reduction of a neuroinflammatory response caused by blast overpressure. CONCLUSIONS Blast overpressure resulted in an increased expression of proteins involved in gliosis within the auditory system, which were reduced by NPD1. Treatment of NPD1 suggests an effective strategy to reduce or halt auditory microglial cell activation due to primary blast exposure. LEVEL OF EVIDENCE NA Laryngoscope, 131:E2018-E2025, 2021.
Collapse
Affiliation(s)
- José David Ríos
- US Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, Texas, U.S.A
| | - Charlotte K Hughes
- US Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, Texas, U.S.A
| | - John Lally
- US Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, Texas, U.S.A
| | - Nathan Wienandt
- US Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, Texas, U.S.A
| | - Carlos Esquivel
- Department of Defense (DoD) Hearing Center of Excellence, Defense Health Agency, Joint Base San Antonio-Lackland, San Antonio, Texas, U.S.A
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital and Department of Anesthesia, Perioperative and Pain Medicine, Harvard Medical School, Boston, Massachusetts, U.S.A
| | - Erik K Weitzel
- US Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, Texas, U.S.A.,Department of Defense (DoD) Hearing Center of Excellence, Defense Health Agency, Joint Base San Antonio-Lackland, San Antonio, Texas, U.S.A
| |
Collapse
|
6
|
Azar A, Bhagavathula KB, Hogan J, Ouellet S, Satapathy S, Dennison CR. Protective Headgear Attenuates Forces on the Inner Table and Pressure in the Brain Parenchyma During Blast and Impact: An Experimental Study Using a Simulant-Based Surrogate Model of the Human Head. J Biomech Eng 2020; 142:041009. [PMID: 31539422 DOI: 10.1115/1.4044926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Indexed: 07/25/2024]
Abstract
Military personnel sustain head and brain injuries as a result of ballistic, blast, and blunt impact threats. Combat helmets are meant to protect the heads of these personnel during injury events. Studies show peak kinematics and kinetics are attenuated using protective headgear during impacts; however, there is limited experimental biomechanical literature that examines whether or not helmets mitigate peak mechanics delivered to the head and brain during blast. While the mechanical links between blast and brain injury are not universally agreed upon, one hypothesis is that blast energy can be transmitted through the head and into the brain. These transmissions can lead to rapid skull flexure and elevated pressures in the cranial vault, and, therefore, may be relevant in determining injury likelihood. Therefore, it could be argued that assessing a helmet for the ability to mitigate mechanics may be an appropriate paradigm for assessing the potential protective benefits of helmets against blast. In this work, we use a surrogate model of the head and brain to assess whether or not helmets and eye protection can alter mechanical measures during both head-level face-on blast and high forehead blunt impact events. Measurements near the forehead suggest head protection can attenuate brain parenchyma pressures by as much as 49% during blast and 52% during impact, and forces on the inner table of the skull by as much as 80% during blast and 84% during impact, relative to an unprotected head.
Collapse
Affiliation(s)
- Austin Azar
- Biomedical Instrumentation Lab, Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | | | - James Hogan
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Simon Ouellet
- Weapons Effects and Protection Section, Defence R&D Valcartier Research Center, Quebec, QC G3J 1X5, Canada
| | - Sikhanda Satapathy
- Chief(A) with Impact Physics Branch, U.S. Army Research Labs, Aberdeen Proving Ground, Aberdeen, MD 21005-5066
| | - Christopher R Dennison
- Biomedical Instrumentation Lab, Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| |
Collapse
|
7
|
Evidence Supporting the Hypothesis That Inflammation-Induced Vasospasm Is Involved in the Pathogenesis of Acquired Sensorineural Hearing Loss. Int J Otolaryngol 2019; 2019:4367240. [PMID: 31781229 PMCID: PMC6875011 DOI: 10.1155/2019/4367240] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/04/2019] [Accepted: 10/19/2019] [Indexed: 12/15/2022] Open
Abstract
Sensorineural hearing loss is mainly acquired and affects an estimated 1.3 billion humans worldwide. It is related to aging, noise, infection, ototoxic drugs, and genetic defects. It is essential to identify reversible and preventable causes to be able to reduce the burden of this disease. Inflammation is involved in most causes and leads to tissue injury through vasospasm-associated ischemia. Vasospasm is reversible. This review summarized evidence linking inflammation-induced vasospasm to several forms of acquired sensorineural hearing loss. The link between vasospasm and sensorineural hearing loss is directly evident in subarachnoid haemorrhage, which involves the release of vasoconstriction-inducing cytokines like interleukin-1, endothelin-1, and tumour necrosis factor. These proinflammatory cytokines can also be released in response to infection, autoimmune disease, and acute or chronically increased inflammation in the ageing organism as in presbyacusis or in noise-induced cochlear injury. Evidence of vasospasm and hearing loss has also been discovered in bacterial meningitis and brain injury. Resolution of inflammation-induced vasospasm has been associated with improvement of hearing in autoimmune diseases involving overproduction of interleukin-1 from inflammasomes. There is mainly indirect evidence for vasospasm-associated sensorineural hearing loss in most forms of systemic or injury- or infection-induced local vascular inflammation. This opens up avenues in prevention and treatment of vascular and systemic inflammation as well as vasospasm itself as a way to prevent and treat most forms of acquired sensorineural hearing loss. Future research needs to investigate interventions antagonising vasospasm and vasospasm-inducing proinflammatory cytokines and their production in randomised controlled trials of prevention and treatment of acquired sensorineural hearing loss. Prime candidates for interventions are hereby inflammasome inhibitors and vasospasm-reducing drugs like nitric oxide donors, rho-kinase inhibitors, and magnesium which have the potential to reduce sensorineural hearing loss in meningitis, exposure to noise, brain injury, arteriosclerosis, and advanced age-related and autoimmune disease-related inflammation.
Collapse
|
8
|
Abstract
OBJECTIVE After the suicide bombings in Brussels on March 22, 2016, many victims consulted our emergency department with otologic symptoms. The aim of this study was to report the otologic morbidity and outcome after acute acoustic trauma in these patients. STUDY DESIGN Prospective cohort study. SETTING Tertiary referral center. PATIENTS Patients reporting subjective hearing loss, tinnitus, feeling of pressure in the ear, vertigo or hyperacusis after witnessing these bombings were included. INTERVENTION All included patients were treated with systemic corticosteroid therapy, concurrent hyperbaric oxygen therapy (HBOT) was advised to each and every included patient. MAIN OUTCOME MEASURES Participants underwent a routine otologic work-up including otoscopy, liminal audiometry, and subjective outcome measures related to tinnitus at baseline and at follow-up. Primary outcome was to describe the otologic morbidity after acute acoustic trauma (AAT). Secondary outcome was to evaluate the recovery of hearing loss, subjective symptoms, and tympanic membrane perforations. RESULTS Fifty-six patients were included in our population with an average age of 27 ± 13 years, and 46% women/54% men. Thirty-two patients reported subjective hearing loss, 45 reported tinnitus, 45 reported a feeling of pressure in the ear, 2 patients experienced vertigo, and 18 patients reported hyperacusis. Otoscopic examination revealed three tympanic membrane perforation (TMP). Sensorineural hearing loss (SNHL) was observed in 41% (n = 23) and mixed hearing loss in 3.6% (n = 2). No conductive hearing loss (CHL) was observed. Follow-up was obtained in 76.8%, with the last follow-up available at 47 ± 74 days. Two perforations closed spontaneously, while one persistent perforation was successfully reconstructed with complete air-bone gap closure. There was a significant improvement in subjective symptoms. SNHL improvement was observed in 52.6% (10/19), mixed hearing loss improved in both patients. Improvement in hearing thresholds was seen in patients treated with steroids and in those treated with steroids and HBOT, there was no significant difference in the degree of improvement between these two groups. CONCLUSIONS Blast-related otologic injuries have a significant impact on morbidity. Comprehensive otologic evaluation and state-of-the-art treatment may lead to a significant improvement in symptoms and hearing loss.
Collapse
|
9
|
A Comprehensive Study of Oxidative Stress in Tinnitus Patients. Indian J Otolaryngol Head Neck Surg 2018; 70:521-526. [PMID: 30464909 DOI: 10.1007/s12070-018-1464-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/23/2018] [Indexed: 10/28/2022] Open
Abstract
Oxidative stress is considered to be one of the molecular changes that are the underlying causes of tinnitus. The aim of this study was to investigate the dynamic thiol/disulphide homeostasis as a new oxidative stress parameter in tinnitus patients as well as to investigate the lipid hydroperoxide (LOOH), total antioxidant status (TAS), total oxidant status (TOS) and oxidative stress index (OSI) parameters and compare the results with the results of the healthy control group. A prospective controlled trial was performed on tinnitus patients in Harran University hospital. A total of 70 subjects, including 35 tinnitus patients and 35 healthy individuals participated in this study. Their total thiol, native thiol levels and LOOH, TAS, TOS levels were measured in plasma of all tinnitus patients and healthy volunteers participants. TOS and OSI levels were significantly increased, and TAS levels were significantly lower in the patient groups compared with the control group (p < 0.01). Native thiol levels and Native thiol/total thiol ratios were significantly lower in the tinnitus group compared to the control group (p < 0.01). Disulphide level and disulphide/native thiol and disulphide/total thiol ratios were significantly higher in the patients (p < 0.01). Also, LOOH ratios were significantly higher in the tinnitus group (p < 0.01). The results of this study reveal that in tinnitus cases, the oxidative stress and antioxidant enzyme imbalance were more significant than in healthy control group. The nature of the relationship between oxidative stress and tinnitus should be clarified with larger studies.
Collapse
|
10
|
Sandlin DS, Yu Y, Huang J, Zhang C, Arteaga AA, Lippincott JK, Peeden EO, Guyton RR, Chen L, Beneke LL, Allison JC, Zhu H, Zhou W. Autonomic responses to blast overpressure can be elicited by exclusively exposing the ear in rats. J Otol 2018; 13:44-53. [PMID: 30559764 PMCID: PMC6291641 DOI: 10.1016/j.joto.2018.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/28/2018] [Accepted: 01/30/2018] [Indexed: 11/29/2022] Open
Abstract
Blast overpressure has become an increasing cause of brain injuries in both military and civilian populations. Though blast's direct effects on the cochlea and vestibular organs are active areas of study, little attention has been given to the ear's contribution to the overall spectrum of blast injury. Acute autonomic responses to blast exposure, including bradycardia and hypotension, can cause hypoxia and contribute to blast-induced neurotrauma. Existing literature suggests that these autonomic responses are elicited through blast impacting the thorax and lungs. We hypothesize that the unprotected ear also provides a vulnerable locus for blast to cause autonomic responses. We designed a blast generator that delivers controlled overpressure waves into the ear canal without impacting surrounding tissues in order to study the ear's specific contribution to blast injury. Anesthetized adult rats' left ears were exposed to a single blast wave ranging from 0 to 110 PSI (0-758 kPa). Blast exposed rats exhibited decreased heart rates and blood pressures with increased blast intensity, similar to results gathered using shock tubes and whole-body exposure in the literature. While rats exposed to blasts below 50 PSI (345 kPa) exhibited increased respiratory rate with increased blast intensity, some rats exposed to blasts higher than 50 PSI (345 kPa) stopped breathing immediately and ultimately died. These autonomic responses were significantly reduced in vagally denervated rats, again similar to whole-body exposure literature. These results support the hypothesis that the unprotected ear contributes to the autonomic responses to blast.
Collapse
Affiliation(s)
- David S. Sandlin
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA
- School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Yue Yu
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jun Huang
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Chunming Zhang
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Otolaryngology, First Affiliated Hospital, Shanxi Medical University, 85 Jiefang S Rd, Yingze Qu, Taiyuan Shi, Shanxi Sheng, China
| | - Alberto A. Arteaga
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - John K. Lippincott
- School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Erin O.H. Peeden
- School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Ryan R. Guyton
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA
| | - Lan Chen
- Summer Undergraduate Research Experience, University of Mississippi Medical Center, Jackson, MS, USA
| | - Laura L.S. Beneke
- School of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jerome C. Allison
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Hong Zhu
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Wu Zhou
- Department of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
11
|
Muzaffar SJ, Orr L, Rickard RF, Coulson CJ, Irving RM. Mitigating noise-induced hearing loss after blast injury. TRAUMA-ENGLAND 2018. [DOI: 10.1177/1460408618755191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Introduction Whilst hearing injuries are not life threatening they may have a profound impact on the victim’s ability to understand and interact with the world around them. Noise-induced hearing loss is a common occupational injury and hearing impairment as a consequence of noise and blast exposure remains the most common injury in both war and peace for military personnel. Health and Safety legislation has made an impact and in the future innovative approaches to mitigate against acoustic injury sustained in the work place will be fundamental. For the Armed Forces, noise exposure during conflict is unpredictable. Furthermore, recent events in the UK and elsewhere have highlighted the potential civilian impact of blast injuries on hearing in the acute setting. No well-established protocol for the management of acute, blast-induced hearing injury currently exists. Methods Narrative review is supported by electronic literature searches of PubMed, Embase and the Cochrane Library. Synthesis of published literature and production of flow charts for the acute setting are part of the Emergency Preparedness, Resilience and Response programme. Results Whilst there is a lack of high-quality randomised controlled trials, there are a number of studies that may inform our choice of acute management. Animal studies of acute acoustic trauma have shown the potential protective effects of corticosteroids. Human data may be extrapolated from sudden onset sensorineural hearing loss where again there is evidence for the use of corticosteroids. Less certainty exists around the use of other treatments including antioxidants. Intratympanic administration of corticosteroids may be superior to oral administration, particularly in the salvage setting. No evidence exists specifically pertaining to the paediatric population. Conclusion Prompt identification of any hearing deficit followed by administration of glucocorticoids either orally or via intratympanic preparations is the mainstay of management. Further research is needed to identify the optimum acute management.
Collapse
Affiliation(s)
- SJ Muzaffar
- Queen Elizabeth Hospital Birmingham, Birmingham, UK
- Birmingham Children’s Hospital, Birmingham, UK
| | - L Orr
- Queen Elizabeth Hospital Birmingham, Birmingham, UK
- Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Birmingham, UK
| | - RF Rickard
- Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Birmingham, UK
| | - CJ Coulson
- Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - RM Irving
- Queen Elizabeth Hospital Birmingham, Birmingham, UK
- Birmingham Children’s Hospital, Birmingham, UK
| |
Collapse
|
12
|
Fievisohn E, Bailey Z, Guettler A, VandeVord P. Primary Blast Brain Injury Mechanisms: Current Knowledge, Limitations, and Future Directions. J Biomech Eng 2018; 140:2666247. [DOI: 10.1115/1.4038710] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Indexed: 12/18/2022]
Abstract
Mild blast traumatic brain injury (bTBI) accounts for the majority of brain injury in United States service members and other military personnel worldwide. The mechanisms of primary blast brain injury continue to be disputed with little evidence to support one or a combination of theories. The main hypotheses addressed in this review are blast wave transmission through the skull orifices, direct cranial transmission, skull flexure dynamics, thoracic surge, acceleration, and cavitation. Each possible mechanism is discussed using available literature with the goal of focusing research efforts to address the limitations and challenges that exist in blast injury research. Multiple mechanisms may contribute to the pathology of bTBI and could be dependent on magnitudes and orientation to blast exposure. Further focused biomechanical investigation with cadaver, in vivo, and finite element models would advance our knowledge of bTBI mechanisms. In addition, this understanding could guide future research and contribute to the greater goal of developing relevant injury criteria and mandates to protect our soldiers on the battlefield.
Collapse
Affiliation(s)
- Elizabeth Fievisohn
- Department of Biomedical Engineering and Mechanics, Virginia Tech, 440 Kelly Hall, 325 Stanger Street, Blacksburg, VA 24061 e-mail:
| | - Zachary Bailey
- Department of Biomedical Engineering and Mechanics, Virginia Tech, 440 Kelly Hall, 325 Stanger Street, Blacksburg, VA 24061 e-mail:
| | - Allison Guettler
- Department of Mechanical Engineering, Virginia Tech, 440 Kelly Hall, 325 Stanger Street, Blacksburg, VA 24061 e-mail:
| | - Pamela VandeVord
- Department of Biomedical Engineering and Mechanics, Virginia Tech, 317 Kelly Hall, 325 Stanger Street, Blacksburg, VA 24061; Salem Veterans Affairs Medical Center, Salam, VA 24153 e-mail:
| |
Collapse
|
13
|
|
14
|
Analytical and numerical modeling of the hearing system: Advances towards the assessment of hearing damage. Hear Res 2017; 349:111-128. [PMID: 28161584 DOI: 10.1016/j.heares.2017.01.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 01/20/2017] [Accepted: 01/25/2017] [Indexed: 12/16/2022]
Abstract
Hearing is an extremely complex phenomenon, involving a large number of interrelated variables that are difficult to measure in vivo. In order to investigate such process under simplified and well-controlled conditions, models of sound transmission have been developed through many decades of research. The value of modeling the hearing system is not only to explain the normal function of the hearing system and account for experimental and clinical observations, but to simulate a variety of pathological conditions that lead to hearing damage and hearing loss, as well as for development of auditory implants, effective ear protections and auditory hazard countermeasures. In this paper, we provide a review of the strategies used to model the auditory function of the external, middle, inner ear, and the micromechanics of the organ of Corti, along with some of the key results obtained from such modeling efforts. Recent analytical and numerical approaches have incorporated the nonlinear behavior of some parameters and structures into their models. Few models of the integrated hearing system exist; in particular, we describe the evolution of the Auditory Hazard Assessment Algorithm for Human (AHAAH) model, used for prediction of hearing damage due to high intensity sound pressure. Unlike the AHAAH model, 3D finite element models of the entire hearing system are not able yet to predict auditory risk and threshold shifts. It is expected that both AHAAH and FE models will evolve towards a more accurate assessment of threshold shifts and hearing loss under a variety of stimuli conditions and pathologies.
Collapse
|
15
|
Koç S, Akyüz S, Somuk BT, Soyalic H, Yılmaz B, Taskin A, Bilinc H, Aksoy N. Paraoxonase Activity and Oxidative Status in Patients with Tinnitus. J Audiol Otol 2016; 20:17-21. [PMID: 27144229 PMCID: PMC4853894 DOI: 10.7874/jao.2016.20.1.17] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/17/2015] [Accepted: 01/21/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The aim of this study was to investigate serum paraoxanase-1 (PON) activity, total oxidant status (TOS), total antioxidant status (TAS), and the oxidative stress index (OSI) in tinnitus; and to compare the results with data from healthy subjects. SUBJECTS AND METHODS A total of 114 subjects-54 patients with tinnitus and 60 healthy controls were enrolled in this study. Serum PON activity, TOS, TAS, and OSI levels were measured. RESULTS In the tinnitus group, TAS, and PON were significantly lower than in the control group (p<0.001). However, the TOS, and OSI levels were significantly higher in the tinnitus group than in the control group (p<0.001). CONCLUSIONS According to the data obtained from the present study, patients with tinnitus were exposed to potent oxidative stress. Oxidative stress may be the key contributing factor to the pathogenesis of tinnitus.
Collapse
Affiliation(s)
- Sema Koç
- Department of Otorhinolaryngology, Antalya Education and Research Hospital, Antalya, Turkey
| | - Servet Akyüz
- Department of Otorhinolaryngology, Gaziosmanpasa University School of Medicine, Tokat, Turkey
| | - Battal Tahsin Somuk
- Department of Otorhinolaryngology, Gaziosmanpasa University School of Medicine, Tokat, Turkey
| | - Harun Soyalic
- Department of Otorhinolaryngology, Gaziosmanpasa University School of Medicine, Tokat, Turkey
| | - Beyhan Yılmaz
- Department of Otorhinolaryngology, Dicle University School of Medicine, Diyarbakır, Turkey
| | - Abdullah Taskin
- Department of Biochemistry, Harran University School of Medicine, Sanliurfa, Turkey
| | - Hasan Bilinc
- Department of Biochemistry, Harran University School of Medicine, Sanliurfa, Turkey
| | - Nurten Aksoy
- Department of Biochemistry, Harran University School of Medicine, Sanliurfa, Turkey
| |
Collapse
|
16
|
Galazyuk A, Hébert S. Gap-Prepulse Inhibition of the Acoustic Startle Reflex (GPIAS) for Tinnitus Assessment: Current Status and Future Directions. Front Neurol 2015; 6:88. [PMID: 25972836 PMCID: PMC4411996 DOI: 10.3389/fneur.2015.00088] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/09/2015] [Indexed: 02/06/2023] Open
Abstract
The progress in the field of tinnitus largely depends on the development of a reliable tinnitus animal model. Recently, a new method based on the acoustic startle reflex modification was introduced for tinnitus screening in laboratory animals. This method was enthusiastically adopted and now widely used by many scientists in the field due to its seeming simplicity and a number of advantages over the other methods of tinnitus assessment. Furthermore, this method opened an opportunity for tinnitus assessment in humans as well. Unfortunately, multiple modifications of data collection and interpretation implemented in different labs make comparisons across studies very difficult. In addition, recent animal and human studies have challenged the original “filling-in” interpretation of the paradigm. Here, we review the current literature to emphasize on the commonalities and differences in data collection and interpretation across laboratories that are using this method for tinnitus assessment. We also propose future research directions that could be taken in order to establish whether or not this method is warranted as an indicator of the presence of tinnitus.
Collapse
Affiliation(s)
- Alexander Galazyuk
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University , Rootstown, OH , USA
| | - Sylvie Hébert
- International Laboratory for Research on Brain, Music, and Sound (BRAMS), Faculty of Medicine, School of Speech Pathology and Audiology, Université de Montréal , Montréal, QC , Canada
| |
Collapse
|