1
|
Yamanaka A, Rattanaamnuaychai P, Matsuda M, Suzuki R, Matsuura Y, Tatsumi M, Konishi E. Engineered flavivirus vaccines control induction of crossreactive infection-enhancing and -neutralizing antibodies. Vaccine 2022; 40:6004-6011. [PMID: 36109279 DOI: 10.1016/j.vaccine.2022.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/20/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022]
Abstract
Flaviviruses are important human pathogens because of their global distribution and disease severity. The high structural similarity among flaviviruses induces cross-immunity, with individual flaviviruses exhibiting crossreactive infection-enhancing and/or -neutralizing activities against other flaviviruses. Unlike neutralizing antibodies, enhancing antibodies may increase the risk of disease severity. Vaccine-induced enhancement remains a concern in the development of flavivirus vaccines. Here, we immunized mice with DNA vaccine candidates (pcJEME, pcWNME or pcZIKME) against Japanese encephalitis virus (JEV), West Nile virus (WNV) or Zika virus (ZIKV), respectively, and investigated crossreactive neutralizing and enhancing antibody activities against seven flaviviruses. pcZIKME induced higher cross-neutralization against dengue viruses than against JEV and WNV. Moreover, pcZIKME with a single amino acid substitution (D87N) showed an increase in crossreactive neutralizing activity and a decrease in enhancing activities against other flaviviruses. A similar trend was observed in pcWNME. Engineered antigen might contribute to the development of safe and effective flavivirus vaccines.
Collapse
Affiliation(s)
- Atsushi Yamanaka
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI), Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand; Mahidol-Osaka Center for Infectious Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; BIKEN Endowed Department of Dengue Vaccine Development, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Pimploy Rattanaamnuaychai
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI), Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Mami Matsuda
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshiharu Matsuura
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan; Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Masashi Tatsumi
- Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections (RCC-ERI), Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Eiji Konishi
- BIKEN Endowed Department of Dengue Vaccine Development, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Antibody-dependent enhancement representing in vitro infective progeny virus titer correlates with the viremia level in dengue patients. Sci Rep 2021; 11:12354. [PMID: 34117329 PMCID: PMC8196181 DOI: 10.1038/s41598-021-91793-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
Dengue virus (DENV) causes dengue fever (DF) and dengue hemorrhagic fever in humans. Some DF patients suddenly develop severe symptoms around the defervescent period. Although the pathogenic mechanism of the severe symptoms has not been fully elucidated, the viremia level in the early phase has been shown to correlate with the disease severity. One of the hypotheses is that a phenomenon called antibody-dependent enhancement (ADE) of infection leads to high level of viremia. To examine the plausibility of this hypothesis, we examined the relationship between in vitro ADE activity and in vivo viral load quantity in six patients with dengue diseases. Blood samples were collected at multiple time points between the acute and defervescent phases, and the balance between neutralizing and enhancing activities against the autologous and prototype viruses was examined. As the antibody levels against DENV were rapidly increased, ADE activity was decreased over time or partially maintained against some viruses at low serum dilution. In addition, positive correlations were observed between ADE activity representing in vitro progeny virus production and viremia levels in patient plasma samples. The measurement of ADE activity in dengue-seropositive samples may help to predict the level of viral load in the subsequent DENV infection.
Collapse
|
3
|
Yamanaka A, Konishi E. Key Amino Acid Substitution for Infection-Enhancing Activity-Free Designer Dengue Vaccines. iScience 2019; 13:125-137. [PMID: 30826727 PMCID: PMC6402262 DOI: 10.1016/j.isci.2019.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 11/17/2022] Open
Abstract
Dengue is a globally important disease caused by four serotypes of dengue virus. Dengue vaccine development has been hampered by antigenic cross-reactivity among serotypes, which potentially causes antibody-dependent enhancement of infection and disease severity. Here we found that a single amino acid substitution in the envelope protein at position 87 from aspartic acid to asparagine or at position 107 from leucine to phenylalanine is critical for suppressing the induction of infection-enhancing antibody in a mouse model. The site and type of amino acid substitution were determined via neutralization escape using an enhancing-activity-only monoclonal antibody that was engineered to reveal neutralizing activity. Mutated dengue type 1 DNA vaccines containing either or both amino acid substitutions induced neutralizing antibodies devoid of enhancing activity against all serotypes. The effect of substitution was further demonstrated using other serotypes and a tetravalent formulation. This finding may contribute to the development of infection-enhancing-activity-free dengue vaccines. Amino acids at E87 or E107 are critical for dengue-enhancing antibody induction Neutralization escape is useful for identifying the key types or sites of amino acids Each substitution can be applied to antigens of all four dengue serotypes A modified tetravalent DNA vaccine suppresses enhancing antibody induction in mice
Collapse
Affiliation(s)
- Atsushi Yamanaka
- BIKEN Endowed Department of Dengue Vaccine Development, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand; BIKEN Endowed Department of Dengue Vaccine Development, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan.
| | - Eiji Konishi
- BIKEN Endowed Department of Dengue Vaccine Development, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand; BIKEN Endowed Department of Dengue Vaccine Development, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|