1
|
Yang J, Lei D, Peng J, Suo X, Pinaya WHL, Li W, Li J, Kemp GJ, Peng R, Gong Q. Disrupted brain gray matter networks in drug-naïve participants with essential tremor. Neuroradiology 2021; 63:1501-1510. [PMID: 33782719 DOI: 10.1007/s00234-021-02653-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/20/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE To use structural magnetic resonance imaging and graph theory approaches to investigate the topological organization of the brain morphological network based on gray matter in essential tremor, and its potential relation to disease severity. METHODS In this prospective study conducted from November 2018 to November 2019, 36 participants with essential tremor and 37 matched healthy controls underwent magnetic resonance imaging. Brain networks based on the morphological similarity of gray matter across regions were analyzed using graph theory. Nonparametric permutation testing was used to assess group differences in topological metrics. Support vector machine was applied to the gray matter morphological matrices to classify participants with essential tremor vs. healthy controls. RESULTS Compared with healthy controls, participants with essential tremor showed increased global efficiency (p < 0.01) and decreased path length (p < 0.01); abnormal nodal properties in frontal, parietal, and cerebellar lobes; and disconnectivity in cerebello-thalamo-cortical network. The abnormal brain nodal centralities (left superior cerebellum gyrus; right caudate nucleus) correlated with clinical measures, both motor (Fahn-Tolosa-Marìn tremor rating, p = 0.017, r = - 0.41) and nonmotor (Hamilton depression scale, p = 0.040, r = - 0.36; Hamilton anxiety scale, p = 0.008, r = - 0.436). Gray matter morphological matrices classified individuals with high accuracy of 80.0%. CONCLUSION Participants with essential tremor showed randomization in global properties and dysconnectivity in the cerebello-thalamo-cortical network. Participants with essential tremor could be distinguished from healthy controls by gray matter morphological matrices.
Collapse
Affiliation(s)
- Jing Yang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Du Lei
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Jiaxin Peng
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xueling Suo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Walter H L Pinaya
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Wenbin Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Junying Li
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Rong Peng
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
| |
Collapse
|
2
|
Lopez-de-Ipina K, Solé-Casals J, Sánchez-Méndez JI, Romero-Garcia R, Fernandez E, Requejo C, Poologaindran A, Faúndez-Zanuy M, Martí-Massó JF, Bergareche A, Suckling J. Analysis of Fine Motor Skills in Essential Tremor: Combining Neuroimaging and Handwriting Biomarkers for Early Management. Front Hum Neurosci 2021; 15:648573. [PMID: 34168544 PMCID: PMC8219239 DOI: 10.3389/fnhum.2021.648573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/19/2021] [Indexed: 12/22/2022] Open
Abstract
Essential tremor (ET) is a highly prevalent neurological disorder characterized by action-induced tremors involving the hand, voice, head, and/or face. Importantly, hand tremor is present in nearly all forms of ET, resulting in impaired fine motor skills and diminished quality of life. To advance early diagnostic approaches for ET, automated handwriting tasks and magnetic resonance imaging (MRI) offer an opportunity to develop early essential clinical biomarkers. In this study, we present a novel approach for the early clinical diagnosis and monitoring of ET based on integrating handwriting and neuroimaging analysis. We demonstrate how the analysis of fine motor skills, as measured by an automated Archimedes' spiral task, is correlated with neuroimaging biomarkers for ET. Together, we present a novel modeling approach that can serve as a complementary and promising support tool for the clinical diagnosis of ET and a large range of tremors.
Collapse
Affiliation(s)
- Karmele Lopez-de-Ipina
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- EleKin Research Group, Department of System Engineering and Automation, University of the Basque Country UPV/EHU, Donostia-San Sebastian, Spain
| | - Jordi Solé-Casals
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Data and Signal Processing Research Group, University of Vic-Central University of Catalonia, Barcelona, Spain
| | - José Ignacio Sánchez-Méndez
- EleKin Research Group, Department of System Engineering and Automation, University of the Basque Country UPV/EHU, Donostia-San Sebastian, Spain
| | | | - Elsa Fernandez
- EleKin Research Group, Department of System Engineering and Automation, University of the Basque Country UPV/EHU, Donostia-San Sebastian, Spain
| | - Catalina Requejo
- Cajal Institute, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Anujan Poologaindran
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- The Alan Turing Institute, British Library, London, United Kingdom
| | | | - José Félix Martí-Massó
- Neurodegenerative Disorders Area, Biodonostia Health Research Institute, Donostia-San Sebastian, Spain
- Movement Disorders Unit, Department of Neurology, Donostia University Hospital, Donostia-San Sebastian, Spain
- Biomedical Research Networking Centre Consortium for the Area of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Alberto Bergareche
- Neurodegenerative Disorders Area, Biodonostia Health Research Institute, Donostia-San Sebastian, Spain
- Movement Disorders Unit, Department of Neurology, Donostia University Hospital, Donostia-San Sebastian, Spain
- Biomedical Research Networking Centre Consortium for the Area of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - John Suckling
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
3
|
Tapper S, Göransson N, Lundberg P, Tisell A, Zsigmond P. A pilot study of essential tremor: cerebellar GABA+/Glx ratio is correlated with tremor severity. CEREBELLUM & ATAXIAS 2020; 7:8. [PMID: 32607248 PMCID: PMC7318770 DOI: 10.1186/s40673-020-00116-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022]
Abstract
Objective Essential tremor is a common movement disorder with an unclear origin. Emerging evidence suggests the role of the cerebellum and the thalamus in tremor pathophysiology. We examined the two main neurotransmitters acting inhibitory (GABA+) and excitatory (Glx) respectively, in the thalamus and cerebellum, in patients diagnosed with severe essential tremor. Furthermore, we also investigated the relationship between determined neurotransmitter concentrations and tremor severity in the essential tremor patients. Methods Ten essential tremor patients (prior to deep brain stimulation surgery) and six healthy controls, were scanned using a 3 T MR system. GABA+ and Glx concentrations were measured using magnetic resonance spectroscopy (MRS) performed using single voxel MEGA-PRESS. For the purpose of assessing the tremor severity, the essential tremor rating scale (ETRS) was used in accordance with Fahn, Tolosa, and Marin. Results We demonstrated that the cerebellar GABA+/Glx ratio was positively correlated to the ETRS (r = 0.70, p = 0.03) in essential tremor. Cerebellar and thalamic GABA+ and Glx concentrations did not show any significant difference when comparing essential tremor patients with healthy controls, at the group level. Conclusion We demonstrated a positive correlation between increasing tremor disability and the ratio of GABA+/ Glx in the cerebellum of essential tremor patients. This highlights the impact of an altered balance of the excitatory and inhibitory neurotransmitters in tremor severity. Rather than a change in GABA+, which was constant, we attribute this finding to an overall decrease of Glx.
Collapse
Affiliation(s)
- Sofie Tapper
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,Department of Medical Radiation Physics and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Nathanael Göransson
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Peter Lundberg
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,Department of Medical Radiation Physics and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Anders Tisell
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,Department of Medical Radiation Physics and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Peter Zsigmond
- Department of Neurosurgery and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
4
|
Lopez AM, Trujillo P, Hernandez AB, Lin YC, Kang H, Landman BA, Englot DJ, Dawant BM, Konrad PE, Claassen DO. Structural Correlates of the Sensorimotor Cerebellum in Parkinson's Disease and Essential Tremor. Mov Disord 2020; 35:1181-1188. [PMID: 32343870 DOI: 10.1002/mds.28044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/15/2019] [Accepted: 02/28/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) and essential tremor (ET) are commonly encountered movement disorders. Pathophysiologic processes that localize to the cerebellum are described in both. There are limited studies investigating cerebellar structural changes in these conditions, largely because of inherent challenges in the efficiency of segmentation. METHODS We applied a novel multiatlas cerebellar segmentation method to T1-weighted images in 282 PD and 111 essential tremor patients to define 26 cerebellar lobule volumes. The severity of postural and resting tremor in both populations and gait and postural instability in PD patients were defined using subscores of the UPDRS and Washington Heights-Inwood Genetic Study motor scales. These clinical measurements were related to lobule volume size. Multiple comparisons were controlled using a false discovery rate method. RESULTS Group differences were identified between ET and PD patients, with reductions in deep cerebellar nucleus volume in ET versus reduced lobule VI volume in PD. In ET patients, lobule VIII was negatively correlated with the severity of postural tremor. In PD patients, lobule IV was positively correlated with resting tremor and total tremor severity. We observed differences in cerebellar structure that localized to sensorimotor lobules of the cerebellum. Lobule volumes appeared to differentially relate to clinical symptoms, suggesting important clinicopathologic distinctions between these conditions. These results emphasize the role of the cerebellum in tremor symptoms and should foster future clinical and pathologic investigations of the sensorimotor lobules of the cerebellum. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Alexander M Lopez
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Paula Trujillo
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Adreanna B Hernandez
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ya-Chen Lin
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Bennett A Landman
- Department of Radiology/Biomedical Engineering, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Dario J Englot
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Benoit M Dawant
- Department of Radiology/Biomedical Engineering, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Peter E Konrad
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Daniel O Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
5
|
Paul JL, Dashtipour K, Chen Z, Wang C. DNA methylome study of human cerebellar tissues identified genes and pathways possibly involved in essential tremor. PRECISION CLINICAL MEDICINE 2019; 2:221-234. [PMID: 31886034 PMCID: PMC6927097 DOI: 10.1093/pcmedi/pbz028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/30/2019] [Accepted: 12/01/2019] [Indexed: 01/13/2023] Open
Abstract
Background Essential tremor (ET) is a neurological syndrome of unknown origin with poorly understood etiology and pathogenesis. It is suggested that the cerebellum and its tracts may be involved in the pathophysiology of ET. DNA methylome interrogation of cerebellar tissue may help shine some light on the understanding of the mechanism of the development of ET. Our study used postmortem human cerebellum tissue samples collected from 12 ET patients and 11 matched non-ET controls for DNA methylome study to identify differentially methylated genes in ET. Results Using Nugen’s Ovation reduced representation bisulfite sequencing (RRBS), we identified 753 genes encompassing 938 CpG sites with significant differences in DNA methylation between the ET and the control group. Identified genes were further analyzed with Ingenuity Pathway Analysis (IPA) by which we identified certain significant pathways, upstream regulators, diseases and functions, and networks associated with ET. Conclusions Our study provides evidence that there are significant differences in DNA methylation patterns between the ET and control samples, suggesting that the methylation alteration of certain genes in the cerebellum may be associated with ET pathogenesis. The identified genes allude to the GABAergic hypothesis which supports the notation that ET is a neurodegenerative disease, particularly involving the cerebellum.
Collapse
Affiliation(s)
- Jennifer L Paul
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Khashayar Dashtipour
- Division of Movement Disorders, Department of Neurology, Loma Linda University Medical Center, Loma Linda, CA 92350, USA
| | - Zhong Chen
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Charles Wang
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA.,Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| |
Collapse
|
6
|
Lai RY, Tomishon D, Figueroa KP, Pulst SM, Perlman S, Wilmot G, Gomez CM, Schmahmann JD, Paulson H, Shakkottai VG, Ying SH, Zesiewicz T, Bushara K, Geschwind M, Xia G, Subramony SH, Ashizawa T, Kuo SH. Tremor in the Degenerative Cerebellum: Towards the Understanding of Brain Circuitry for Tremor. THE CEREBELLUM 2019; 18:519-526. [PMID: 30830673 DOI: 10.1007/s12311-019-01016-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cerebellar degenerative pathology has been identified in tremor patients; however, how the degenerative pathology could contribute to tremor remains unclear. If the cerebellar degenerative pathology can directly drive tremor, one would hypothesize that tremor is likely to occur in the diseases of cerebellar ataxia and follows the disease progression in such disorders. To further test this hypothesis, we studied the occurrence of tremor in different disease stages of classical cerebellar degenerative disorders: spinocerebellar ataxias (SCAs). We further separately analyzed postural tremor and rest tremor, two forms of tremor that both involve the cerebellum. We also explored tremor in different subtypes of SCAs. We found that 18.1% of SCA patients have tremor. Interestingly, SCA patients with tremor have worse ataxia than those without tremor. When stratifying patients into mild, moderate, and severe disease stages according to the severity of ataxia, moderate and severe SCA patients more commonly have tremor than those with mild ataxia, the effect most prominently observed in postural tremor of SCA3 and SCA6 patients. Finally, tremor can independently contribute to worse functional status in SCA2 patients, even after adjusting for ataxia severity. Tremor is more likely to occur in the severe stage of cerebellar degeneration when compared to mild stages. Our results partially support the cerebellar degenerative model of tremor.
Collapse
Affiliation(s)
- Ruo-Yah Lai
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Darya Tomishon
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Karla P Figueroa
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Susan Perlman
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - George Wilmot
- Department of Neurology, Emory University, Atlanta, GA, USA
| | | | - Jeremy D Schmahmann
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Henry Paulson
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | - Sarah H Ying
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Theresa Zesiewicz
- Department of Neurology, University of South Florida, Tampa, FL, USA
| | - Khalaf Bushara
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Michael Geschwind
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Guangbin Xia
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - S H Subramony
- Department of Neurology and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | | | - Sheng-Han Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
7
|
Bareš M, Apps R, Avanzino L, Breska A, D'Angelo E, Filip P, Gerwig M, Ivry RB, Lawrenson CL, Louis ED, Lusk NA, Manto M, Meck WH, Mitoma H, Petter EA. Consensus paper: Decoding the Contributions of the Cerebellum as a Time Machine. From Neurons to Clinical Applications. CEREBELLUM (LONDON, ENGLAND) 2019; 18:266-286. [PMID: 30259343 DOI: 10.1007/s12311-018-0979-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Time perception is an essential element of conscious and subconscious experience, coordinating our perception and interaction with the surrounding environment. In recent years, major technological advances in the field of neuroscience have helped foster new insights into the processing of temporal information, including extending our knowledge of the role of the cerebellum as one of the key nodes in the brain for this function. This consensus paper provides a state-of-the-art picture from the experts in the field of the cerebellar research on a variety of crucial issues related to temporal processing, drawing on recent anatomical, neurophysiological, behavioral, and clinical research.The cerebellar granular layer appears especially well-suited for timing operations required to confer millisecond precision for cerebellar computations. This may be most evident in the manner the cerebellum controls the duration of the timing of agonist-antagonist EMG bursts associated with fast goal-directed voluntary movements. In concert with adaptive processes, interactions within the cerebellar cortex are sufficient to support sub-second timing. However, supra-second timing seems to require cortical and basal ganglia networks, perhaps operating in concert with cerebellum. Additionally, sensory information such as an unexpected stimulus can be forwarded to the cerebellum via the climbing fiber system, providing a temporally constrained mechanism to adjust ongoing behavior and modify future processing. Patients with cerebellar disorders exhibit impairments on a range of tasks that require precise timing, and recent evidence suggest that timing problems observed in other neurological conditions such as Parkinson's disease, essential tremor, and dystonia may reflect disrupted interactions between the basal ganglia and cerebellum.The complex concepts emerging from this consensus paper should provide a foundation for further discussion, helping identify basic research questions required to understand how the brain represents and utilizes time, as well as delineating ways in which this knowledge can help improve the lives of those with neurological conditions that disrupt this most elemental sense. The panel of experts agrees that timing control in the brain is a complex concept in whom cerebellar circuitry is deeply involved. The concept of a timing machine has now expanded to clinical disorders.
Collapse
Affiliation(s)
- Martin Bareš
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- Department of Neurology, School of Medicine, University of Minnesota, Minneapolis, USA.
| | - Richard Apps
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Laura Avanzino
- Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
- Centre for Parkinson's Disease and Movement Disorders, Ospedale Policlinico San Martino, Genoa, Italy
| | - Assaf Breska
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, USA
| | - Egidio D'Angelo
- Neurophysiology Unit, Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Brain Connectivity Center, Fondazione Istituto Neurologico Nazionale Casimiro Mondino (IRCCS), Pavia, Italy
| | - Pavel Filip
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marcus Gerwig
- Department of Neurology, University of Duisburg-Essen, Duisburg, Germany
| | - Richard B Ivry
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, USA
| | - Charlotte L Lawrenson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Elan D Louis
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Nicholas A Lusk
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Mario Manto
- Department of Neurology, CHU-Charleroi, Charleroi, Belgium -Service des Neurosciences, UMons, Mons, Belgium
| | - Warren H Meck
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Hiroshi Mitoma
- Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan
| | - Elijah A Petter
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| |
Collapse
|
8
|
Heterotopic Purkinje Cells: a Comparative Postmortem Study of Essential Tremor and Spinocerebellar Ataxias 1, 2, 3, and 6. THE CEREBELLUM 2019; 17:104-110. [PMID: 28791574 DOI: 10.1007/s12311-017-0876-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Essential tremor (ET) is among the most common neurological diseases. Postmortem studies have noted a series of pathological changes in the ET cerebellum. Heterotopic Purkinje cells (PCs) are those whose cell body is mis-localized in the molecular layer. In neurodegenerative settings, these are viewed as a marker of the progression of neuronal degeneration. We (1) quantify heterotopias in ET cases vs. controls, (2) compare ET cases to other cerebellar degenerative conditions (spinocerebellar ataxias (SCAs) 1, 2, 3, and 6), (3) compare these SCAs to one another, and (4) assess heterotopia within the context of associated PC loss in each disease. Heterotopic PCs were quantified using a standard LH&E-stained section of the neocerebellum. Counts were normalized to PC layer length (n-heterotopia count). It is also valuable to consider PC counts when assessing heterotopia, as loss of PCs extends both to normally located as well as heterotopic PCs. Therefore, we divided n-heterotopias by PC counts. There were 96 brains (43 ET, 31 SCA [12 SCA1, 7 SCA2, 7 SCA3, 5 SCA6], and 22 controls). The median number of n-heterotopias in ET cases was two times higher than that of the controls (2.6 vs. 1.2, p < 0.05). The median number of n-heterotopias in the various SCAs formed a spectrum, with counts being highest in SCA3 and SCA1. In analyses that factored in PC counts, ET had a median n-heterotopia/Purkinje cell count that was three times higher than the controls (0.35 vs. 0.13, p < 0.01), and SCA1 and SCA2 had counts that were 5.5 and 11 times higher than the controls (respective p < 0.001). The median n-heterotopia/PC count in ET was between that of the controls and the SCAs. Similarly, the median PC count in ET was between that of the controls and the SCAs; the one exception was SCA3, in which the PC population is well known to be preserved. Heterotopia is a disease-associated feature of ET. In comparison, several of the SCAs evidenced even more marked heterotopia, although a spectrum existed across the SCAs. The median n-heterotopia/PC count and median PC in ET was between that of the controls and the SCAs; hence, in this regard, ET could represent an intermediate state or a less advanced state of spinocerebellar atrophy.
Collapse
|
9
|
Abstract
Essential tremor (ET) is one of the most common neurologic disorders, and genetic factors are thought to contribute significantly to disease etiology. There has been a relative lack of progress in understanding the genetic etiology of ET. This could reflect a number of factors, including the presence of substantial phenotypic and genotypic heterogeneity. Thus, a meticulous approach to phenotyping is important for genetic research. A lack of standardized phenotyping across studies and patient centers likely has contributed to the relative lack of success of genomewide association studies in ET. To dissect the genetic architecture of ET, whole-genome sequencing will likely be of value. This will allow specific hypotheses about the mode of inheritance and genetic architecture to be tested. A number of approaches still remain unexplored in ET genetics, including the contribution of copy number variants, uncommon moderate-effect alleles, rare variant large-effect alleles (including Mendelian and complex/polygenic modes of inheritance), de novo and gonadal mosaicism, epigenetic changes, and noncoding variation.
Collapse
Affiliation(s)
- Lorraine N Clark
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, and Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Elan D Louis
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York; and Departments of Neurology and of Chronic Disease Epidemiology and Center for Neuroepidemiology and Clinical Neurological Research, Yale School of Medicine, New Haven, CT, United States.
| |
Collapse
|
10
|
Mapping Purkinje Cell Placement Along the Purkinje Cell Layer: an Analysis of Postmortem Tissue from Essential Tremor Patients vs. Controls. THE CEREBELLUM 2017; 15:726-731. [PMID: 26563297 DOI: 10.1007/s12311-015-0742-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Postmortem studies have reported Purkinje cell loss in essential tremor (ET), and we recently demonstrated a significant increase in the mean distance between Purkinje cell bodies (i.e., a larger gap length distance) in ET cases vs. controls, likely reflecting a disease-associated reduction in Purkinje cells. We now analyze the regularity of distribution of Purkinje cells along the Purkinje cell layer to determine whether there is greater disorganization in ET cases than in age-matched controls. A standard parasagittal, formalin-fixed, tissue block was harvested from the neocerebellum of 50 ET cases and 25 age-matched controls. The gap length distance (μm) between Purkinje cells was quantified using a nearest neighbor analysis in which the distance between each Purkinje cell body was measured in OpenLAB software, version 5 (Improvision, Waltham, MA) by drawing a freehand line between adjacent Purkinje cell bodies along the entirety of the Purkinje cell layer within a given image. We analyzed the subject-specific variation in the organization of Purkinje cells along the Purkinje cell layer. The 50 ET cases and 25 controls were similar in age at death, gender, and brain weight. Overall, greater variation in gap length distance (i.e., more disorganization) was associated with greater gap length distance (p < 0.001) and younger age (p = 0.020). However, the variation in the Purkinje cell gap length distance (i.e., Purkinje cell organization) did not differ in ET cases and controls (p = 0.330). We observed that the regularity of the distribution of Purkinje cells along the Purkinje cell layer did not differ between ET cases and controls. Several alternative biological interpretations for this finding are discussed.
Collapse
|
11
|
Filip P, Lungu OV, Manto MU, Bareš M. Linking Essential Tremor to the Cerebellum: Physiological Evidence. THE CEREBELLUM 2017; 15:774-780. [PMID: 26530223 DOI: 10.1007/s12311-015-0740-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Essential tremor (ET), clinically characterized by postural and kinetic tremors, predominantly in the upper extremities, originates from pathological activity in the dynamic oscillatory network comprising the majority of nodes in the central motor network. Evidence indicates dysfunction in the thalamus, the olivocerebellar loops, and intermittent cortical engagement. Pathology of the cerebellum, a structure with architecture intrinsically predisposed to oscillatory activity, has also been implicated in ET as shown by clinical, neuroimaging, and pathological studies. Despite electrophysiological studies assessing cerebellar impairment in ET being scarce, their impact is tangible, as summarized in this review. The electromyography-magnetoencephalography combination provided the first direct evidence of pathological alteration in cortico-subcortical communication, with a significant emphasis on the cerebellum. Furthermore, complex electromyography studies showed disruptions in the timing of agonist and antagonist muscle activation, a process generally attributed to the cerebellum. Evidence pointing to cerebellar engagement in ET has also been found in electrooculography measurements, cerebellar repetitive transcranial magnetic stimulation studies, and, indirectly, in complex analyses of the activity of the ventral intermediate thalamic nucleus (an area primarily receiving inputs from the cerebellum), which is also used in the advanced treatment of ET. In summary, further progress in therapy will require comprehensive electrophysiological and physiological analyses to elucidate the precise mechanisms leading to disease symptoms. The cerebellum, as a major node of this dynamic oscillatory network, requires further study to aid this endeavor.
Collapse
Affiliation(s)
- Pavel Filip
- First Department of Neurology, Faculty of Medicine, Masaryk University and St. Anne's Teaching Hospital, Pekařská 53, 656 91, Brno, Czech Republic.,Central European Institute of Technology, CEITEC MU, Behavioral and Social Neuroscience Research Group, Masaryk University, Brno, Czech Republic
| | - Ovidiu V Lungu
- Department of Psychiatry, Université de Montréal, Montréal, Québec, Canada.,Functional Neuroimaging Unit, Research Center of the Geriatric Institute Affiliated with the Université de Montréal, Montréal, Québec, Canada
| | | | - Martin Bareš
- First Department of Neurology, Faculty of Medicine, Masaryk University and St. Anne's Teaching Hospital, Pekařská 53, 656 91, Brno, Czech Republic. .,Central European Institute of Technology, CEITEC MU, Behavioral and Social Neuroscience Research Group, Masaryk University, Brno, Czech Republic. .,Department of Neurology, School of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
12
|
Cerasa A, Quattrone A. Linking Essential Tremor to the Cerebellum-Neuroimaging Evidence. THE CEREBELLUM 2017; 15:263-75. [PMID: 26626626 DOI: 10.1007/s12311-015-0739-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Essential tremor (ET) is the most common pathological tremor disorder in the world, and post-mortem evidence has shown that the cerebellum is the most consistent area of pathology in ET. In the last few years, advanced neuroimaging has tried to confirm this evidence. The aim of the present review is to discuss to what extent the evidence provided by this field of study may be generalised. We performed a systematic literature search combining the terms ET with the following keywords: MRI, VBM, MRS, DTI, fMRI, PET and SPECT. We summarised and discussed each study and placed the results in the context of existing knowledge regarding the cerebellar involvement in ET. A total of 51 neuroimaging studies met our search criteria, roughly divided into 19 structural and 32 functional studies. Despite clinical and methodological differences, both functional and structural imaging studies showed similar findings but without defining a clear topography of neurodegeneration. Indeed, the vast majority of studies found functional and structural abnormalities in several parts of the anterior and posterior cerebellar lobules, but it remains to be established to what degree these neural changes contribute to clinical symptoms of ET. Currently, advanced neuroimaging has confirmed the involvement of the cerebellum in pathophysiological processes of ET, although a high variability in results persists. For this reason, the translation of this knowledge into daily clinical practice is again partially limited, although new advanced multivariate neuroimaging approaches (machine-learning) are proving interesting changes of perspective.
Collapse
Affiliation(s)
| | - Aldo Quattrone
- IBFM, National Research Council, Catanzaro, CZ, Italy. .,Institute of Neurology, Department of Medical Sciences, University "Magna Graecia", Catanzaro, Italy.
| |
Collapse
|
13
|
Abstract
A fundamental question about essential tremor (ET) is whether its associated pathological changes and disease mechanisms are linkable to a specific brain region. To that end, recent tissue-based studies have made significant strides in elucidating changes in the ET brain. Emerging from these studies is increasing neuropathological evidence linking ET to the cerebellum. These studies have systematically identified a broad range of structural, degenerative changes in the ET cerebellum, spanning across all Purkinje cell compartments. These include the dendritic compartment (where there is an increase in number of Purkinje cell dendritic swellings, a pruning of the dendritic arbor, and a reduction in spine density), the cell body (where, aside from reductions in Purkinje cell linear density in some studies, there is an increase in the number of heterotopic Purkinje cell soma), and the axonal compartment (where a plethora of changes in axonal morphology have been observed, including an increase in the number of thickened axonal profiles, torpedoes, axonal recurrent collaterals, axonal branching, and terminal axonal sprouting). Additional changes, possibly due to secondary remodeling, have been observed in neighboring neuronal populations. These include a hypertrophy of basket cell axonal processes and changes in the distribution of climbing fiber-Purkinje cell synapses. These changes all distinguish ET from normal control brains. Initial studies further indicate that the profile (i.e., constellation) of these changes may separate ET from other diseases of the cerebellum, thereby serving as a disease signature. With the discovery of these changes, a new model of ET has arisen, which posits that it may be a neurodegenerative disorder centered in the cerebellar cortex. These newly emerging neuropathological studies pave the way for anatomically focused, hypothesis-driven, molecular mechanistic studies of disease pathogenesis.
Collapse
|
14
|
Louis ED, Hernandez N, Chen KP, Naranjo KV, Park J, Clark LN, Ottman R. Familial Aggregation of the Cerebellar Signs in Familial Essential Tremor. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2017; 7:439. [PMID: 28176975 PMCID: PMC5288993 DOI: 10.7916/d8kk9c8q] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 12/21/2016] [Indexed: 12/13/2022]
Abstract
Background Although the hallmark feature of essential tremor (ET) is kinetic tremor, patients may exhibit additional motor features (e.g., intention tremor and mild gait ataxia) that are markers of an underlying abnormality of cerebellar function. ET is also a highly familial disorder, but we do not know whether the presence and expression of cerebellar signs are similar across family members. There are simply no published data. The alternative possibility is that these features are not heritable. We tested the specific hypothesis that the presence of cerebellar signs (i.e., intention tremor, tandem gait difficulty) ran in ET families. Methods ET probands and relatives enrolled in a genetic study at Yale and Columbia universities underwent a detailed videotaped neurological examination. Results There were 187 enrollees (59 probands, 128 affected relatives). In a bivariate logistic regression model, the presence of intention tremor in the proband was not a predictor of the presence of intention tremor in the relatives (odds ratio [OR] = 0.60, 95% confidence interval [CI] = 0.28–1.27, p = 0.18). In a similar model, the presence of greater tandem gait difficulty (i.e., a tandem gait score in the upper quartile) in the proband was not a predictor of the presence of such difficulty in the relatives (OR = 1.22, 95% CI = 0.41–3.66, p = 0.73). Discussion The presence of cerebellar signs did not aggregate in families with ET. In the current dataset, these did not seem to be disease features that were heritable.
Collapse
Affiliation(s)
- Elan D Louis
- Division of Movement Disorders, Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA; Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, USA; Center for Neuroepidemiology and Clinical Neurological Research, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Nora Hernandez
- Division of Movement Disorders, Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Karen P Chen
- Division of Movement Disorders, Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Kelly V Naranjo
- Division of Movement Disorders, Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Jemin Park
- Division of Movement Disorders, Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Lorraine N Clark
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Ruth Ottman
- G.H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA; Division of Epidemiology, New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
15
|
Gallea C, Popa T, García-Lorenzo D, Valabregue R, Legrand AP, Apartis E, Marais L, Degos B, Hubsch C, Fernández-Vidal S, Bardinet E, Roze E, Lehéricy S, Meunier S, Vidailhet M. Orthostatic tremor: a cerebellar pathology? Brain 2016; 139:2182-97. [PMID: 27329770 PMCID: PMC4958903 DOI: 10.1093/brain/aww140] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/22/2016] [Indexed: 12/24/2022] Open
Abstract
SEE MUTHURAMAN ET AL DOI101093/AWW164 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Primary orthostatic tremor is characterized by high frequency tremor affecting the legs and trunk during the standing position. Cerebellar defects were suggested in orthostatic tremor without direct evidence. We aimed to characterize the anatomo-functional defects of the cerebellar motor pathways in orthostatic tremor. We used multimodal neuroimaging to compare 17 patients with orthostatic tremor and 17 age- and gender-matched healthy volunteers. Nine of the patients with orthostatic tremor underwent repetitive transcranial stimulation applied over the cerebellum during five consecutive days. We quantified the duration of standing position and tremor severity through electromyographic recordings. Compared to healthy volunteers, grey matter volume in patients with orthostatic tremor was (i) increased in the cerebellar vermis and correlated positively with the duration of the standing position; and (ii) increased in the supplementary motor area and decreased in the lateral cerebellum, which both correlated with the disease duration. Functional connectivity between the lateral cerebellum and the supplementary motor area was abnormally increased in patients with orthostatic tremor, and correlated positively with tremor severity. After repetitive transcranial stimulation, tremor severity and functional connectivity between the lateral cerebellum and the supplementary motor area were reduced. We provide an explanation for orthostatic tremor pathophysiology, and demonstrate the functional relevance of cerebello-thalamo-cortical connections in tremor related to cerebellar defects.
Collapse
Affiliation(s)
- Cécile Gallea
- 1 Centre de NeuroImagerie de Recherche - Institut du Cerveau et de la Moelle épinière, ICM, Paris, France 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France 5 AP-HP, Hôpital de la Pitié Salpêtrière, Département de Neuroradiologie, Paris, France
| | - Traian Popa
- 1 Centre de NeuroImagerie de Recherche - Institut du Cerveau et de la Moelle épinière, ICM, Paris, France 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France
| | - Daniel García-Lorenzo
- 1 Centre de NeuroImagerie de Recherche - Institut du Cerveau et de la Moelle épinière, ICM, Paris, France 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France 5 AP-HP, Hôpital de la Pitié Salpêtrière, Département de Neuroradiologie, Paris, France
| | - Romain Valabregue
- 1 Centre de NeuroImagerie de Recherche - Institut du Cerveau et de la Moelle épinière, ICM, Paris, France 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France 5 AP-HP, Hôpital de la Pitié Salpêtrière, Département de Neuroradiologie, Paris, France
| | | | - Emmanuelle Apartis
- 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France 7 AP-HP, Hôpital de Saint-Antoine, Département de Neurologie, Paris, France
| | - Lea Marais
- 1 Centre de NeuroImagerie de Recherche - Institut du Cerveau et de la Moelle épinière, ICM, Paris, France 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France 5 AP-HP, Hôpital de la Pitié Salpêtrière, Département de Neuroradiologie, Paris, France
| | - Bertrand Degos
- 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France 8 AP-HP, Hôpital de la Pitié Salpêtrière, Département de Neurologie, Paris, France
| | - Cecile Hubsch
- 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France 8 AP-HP, Hôpital de la Pitié Salpêtrière, Département de Neurologie, Paris, France
| | - Sara Fernández-Vidal
- 1 Centre de NeuroImagerie de Recherche - Institut du Cerveau et de la Moelle épinière, ICM, Paris, France 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France
| | - Eric Bardinet
- 1 Centre de NeuroImagerie de Recherche - Institut du Cerveau et de la Moelle épinière, ICM, Paris, France 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France
| | - Emmanuel Roze
- 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France 8 AP-HP, Hôpital de la Pitié Salpêtrière, Département de Neurologie, Paris, France
| | - Stéphane Lehéricy
- 1 Centre de NeuroImagerie de Recherche - Institut du Cerveau et de la Moelle épinière, ICM, Paris, France 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France 5 AP-HP, Hôpital de la Pitié Salpêtrière, Département de Neuroradiologie, Paris, France
| | - Sabine Meunier
- 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France
| | - Marie Vidailhet
- 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France 8 AP-HP, Hôpital de la Pitié Salpêtrière, Département de Neurologie, Paris, France
| |
Collapse
|
16
|
Choe M, Cortés E, Vonsattel JPG, Kuo SH, Faust PL, Louis ED. Purkinje cell loss in essential tremor: Random sampling quantification and nearest neighbor analysis. Mov Disord 2016; 31:393-401. [PMID: 26861543 DOI: 10.1002/mds.26490] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 10/20/2015] [Accepted: 10/26/2015] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Purkinje cell loss has been documented in some, although not all, postmortem studies of essential tremor. Hence, there is considerable controversy concerning the presence of Purkinje cell loss in this disease. To date, few studies have been performed. METHODS Over the past 8 years, we have assembled 50 prospectively studied cases and 25 age-matched controls; none were reported in our previous large series of 33 essential tremor and 21 controls. In addition to methods used in previous studies, the current study used a random sampling approach to quantify Purkinje cells along the Purkinje cell layer with a mean of 217 sites examined in each specimen, allowing for extensive sampling of the Purkinje cell layer within the section. For the first time, we also quantified the distance between Purkinje cell bodies-a nearest neighbor analysis. RESULTS In the Purkinje cell count data collected from fifteen 100 × fields, cases had lower counts than controls in all three counting criteria (cell bodies, nuclei, and nucleoli; all P < 0.001). Purkinje cell linear density was also lower in cases than controls (all P < 0.001). Purkinje cell linear density obtained by random sampling was similarly lower in cases than controls in all three counting criteria (cell bodies, nuclei, and nucleoli, all P ≤ 0.005). In agreement with the quantitative Purkinje cell counts, the mean distance from one Purkinje cell body to another Purkinje cell body along the Purkinje cell layer was greater in cases than controls (P = 0.002). CONCLUSIONS These data provide support for the neurodegeneration of cerebellar Purkinje cells in essential tremor.
Collapse
Affiliation(s)
- Matthew Choe
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, New York, USA
| | - Etty Cortés
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, New York, USA.,Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Jean-Paul G Vonsattel
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, New York, USA.,Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Sheng-Han Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, New York, New York, USA
| | - Elan D Louis
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, Connecticut, USA.,Department of Chronic Disease Epidemiology, Yale School of Medicine, Yale University, New Haven, Connecticut, USA.,Center for Neuroepidemiology and Clinical Neurological Research, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
17
|
Hor H, Francescatto L, Bartesaghi L, Ortega-Cubero S, Kousi M, Lorenzo-Betancor O, Jiménez-Jiménez FJ, Gironell A, Clarimón J, Drechsel O, Agúndez JAG, Kenzelmann Broz D, Chiquet-Ehrismann R, Lleó A, Coria F, García-Martin E, Alonso-Navarro H, Martí MJ, Kulisevsky J, Hor CN, Ossowski S, Chrast R, Katsanis N, Pastor P, Estivill X. Missense mutations in TENM4, a regulator of axon guidance and central myelination, cause essential tremor. Hum Mol Genet 2015; 24:5677-86. [PMID: 26188006 DOI: 10.1093/hmg/ddv281] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/13/2015] [Indexed: 12/16/2022] Open
Abstract
Essential tremor (ET) is a common movement disorder with an estimated prevalence of 5% of the population aged over 65 years. In spite of intensive efforts, the genetic architecture of ET remains unknown. We used a combination of whole-exome sequencing and targeted resequencing in three ET families. In vitro and in vivo experiments in oligodendrocyte precursor cells and zebrafish were performed to test our findings. Whole-exome sequencing revealed a missense mutation in TENM4 segregating in an autosomal-dominant fashion in an ET family. Subsequent targeted resequencing of TENM4 led to the discovery of two novel missense mutations. Not only did these two mutations segregate with ET in two additional families, but we also observed significant over transmission of pathogenic TENM4 alleles across the three families. Consistent with a dominant mode of inheritance, in vitro analysis in oligodendrocyte precursor cells showed that mutant proteins mislocalize. Finally, expression of human mRNA harboring any of three patient mutations in zebrafish embryos induced defects in axon guidance, confirming a dominant-negative mode of action for these mutations. Our genetic and functional data, which is corroborated by the existence of a Tenm4 knockout mouse displaying an ET phenotype, implicates TENM4 in ET. Together with previous studies of TENM4 in model organisms, our studies intimate that processes regulating myelination in the central nervous system and axon guidance might be significant contributors to the genetic burden of this disorder.
Collapse
Affiliation(s)
- Hyun Hor
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), Barcelona, Spain, Universitat Pompeu Fabra (UPF), Barcelona, Spain, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain, CRG CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Catalonia 08003, Spain,
| | - Ludmila Francescatto
- Center for Human Disease Modeling, Duke University, Duke University Medical Center, Durham NC 27710, USA
| | - Luca Bartesaghi
- Department of Medical Genetics, University of Lausanne, Lausanne 1005, Switzerland, Department of Neuroscience and Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Sara Ortega-Cubero
- Neurogenetics Laboratory, Division of Neurosciences, Center for Applied Medical Research (CIMA), and Department of Neurology, Clínica Universidad de Navarra, University of Navarra School of Medicine and Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Pamplona, Navarra 31008, Spain
| | - Maria Kousi
- Center for Human Disease Modeling, Duke University, Duke University Medical Center, Durham NC 27710, USA
| | - Oswaldo Lorenzo-Betancor
- Neurogenetics Laboratory, Division of Neurosciences, Center for Applied Medical Research (CIMA), and Department of Neurology, Clínica Universidad de Navarra, University of Navarra School of Medicine and Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Pamplona, Navarra 31008, Spain
| | - Felix J Jiménez-Jiménez
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, Madrid 28030, Spain
| | - Alexandre Gironell
- Movement Disorders Unit, Neurology Department, Hospital de Sant Pau, Barcelona, Spain, Sant Pau Biomedical Research Institute, Barcelona, Spain
| | - Jordi Clarimón
- Sant Pau Biomedical Research Institute, Barcelona, Spain, Universitat Autònoma de Barcelona and CIBERNED, Barcelona, Catalonia 08026, Spain
| | - Oliver Drechsel
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), Barcelona, Spain, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | | | - Daniela Kenzelmann Broz
- Faculty of Sciences and Department of Biomedicine, Friedrich Miescher Institute of Biomedical Research, Novartis Research Foundation and University of Basel, Basel 4058, Switzerland
| | - Ruth Chiquet-Ehrismann
- Faculty of Sciences and Department of Biomedicine, Friedrich Miescher Institute of Biomedical Research, Novartis Research Foundation and University of Basel, Basel 4058, Switzerland
| | - Alberto Lleó
- Sant Pau Biomedical Research Institute, Barcelona, Spain
| | - Francisco Coria
- Clinic for Nervous Disorders, Service of Neurology, Son Espases University Hospital, Palma de Mallorca 07120, Spain
| | - Elena García-Martin
- Department of Biochemistry and Molecular Biology, University of Extremadura, Cáceres 10071, Spain
| | | | - Maria J Martí
- Movement Disorders Unit, Neurology Service, Hospital Clinic, CIBERNED and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia 08036, Spain and
| | - Jaume Kulisevsky
- Movement Disorders Unit, Neurology Department, Hospital de Sant Pau, Barcelona, Spain, Universitat Autònoma de Barcelona and CIBERNED, Barcelona, Catalonia 08026, Spain
| | - Charlotte N Hor
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), Barcelona, Spain, Universitat Pompeu Fabra (UPF), Barcelona, Spain, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain, CRG CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Catalonia 08003, Spain
| | - Stephan Ossowski
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), Barcelona, Spain, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Roman Chrast
- Department of Medical Genetics, University of Lausanne, Lausanne 1005, Switzerland, Department of Neuroscience and Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University, Duke University Medical Center, Durham NC 27710, USA
| | - Pau Pastor
- Neurogenetics Laboratory, Division of Neurosciences, Center for Applied Medical Research (CIMA), and Department of Neurology, Clínica Universidad de Navarra, University of Navarra School of Medicine and Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Pamplona, Navarra 31008, Spain,
| | - Xavier Estivill
- Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), Barcelona, Spain, Universitat Pompeu Fabra (UPF), Barcelona, Spain, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain, CRG CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona, Catalonia 08003, Spain, Dexeus Women's Health, University Hospital Quiron-Dexeus, Barcelona, Catalonia 08028, Spain
| |
Collapse
|
18
|
Gallea C, Popa T, García-Lorenzo D, Valabregue R, Legrand AP, Marais L, Degos B, Hubsch C, Fernández-Vidal S, Bardinet E, Roze E, Lehéricy S, Vidailhet M, Meunier S. Intrinsic signature of essential tremor in the cerebello-frontal network. Brain 2015; 138:2920-33. [PMID: 26115677 DOI: 10.1093/brain/awv171] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/24/2015] [Indexed: 11/12/2022] Open
Abstract
Essential tremor is a movement disorder characterized by tremor during voluntary movements, mainly affecting the upper limbs. The cerebellum and its connections to the cortex are known to be involved in essential tremor, but no task-free intrinsic signatures of tremor related to structural cerebellar defects have so far been found in the cortical motor network. Here we used voxel-based morphometry, tractography and resting-state functional MRI at 3 T to compare structural and functional features in 19 patients with essential tremor and homogeneous symptoms in the upper limbs, and 19 age- and gender-matched healthy volunteers. Both structural and functional abnormalities were found in the patients' cerebellum and supplementary motor area. Relative to the healthy controls, the essential tremor patients' cerebellum exhibited less grey matter in lobule VIII and less effective connectivity between each cerebellar cortex and the ipsilateral dentate nucleus. The patient's supplementary motor area exhibited (i) more grey matter; (ii) a lower amplitude of low-frequency fluctuation of the blood oxygenation level-dependent signal; (iii) less effective connectivity between each supplementary motor area and the ipsilateral primary motor hand area, and (iv) a higher probability of connection between supplementary motor area fibres and the spinal cord. Structural and functional changes in the supplementary motor area, but not in the cerebellum, correlated with clinical severity. In addition, changes in the cerebellum and supplementary motor area were interrelated, as shown by a correlation between the lower amplitude of low-frequency fluctuation in the supplementary motor area and grey matter loss in the cerebellum. The structural and functional changes observed in the supplementary motor area might thus be a direct consequence of cerebellar defects: the supplementary motor area would attempt to reduce tremor in the motor output by reducing its communication with M1 hand areas and by directly modulating motor output via its corticospinal projections.See Raethjen and Muthuraman (doi:10.1093/brain/awv238) for a scientific commentary on this article.
Collapse
Affiliation(s)
- Cécile Gallea
- 1 Centre de NeuroImagerie de Recherche - Institut du Cerveau et de la Moelle épinière, ICM, Paris, France 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France
| | - Traian Popa
- 1 Centre de NeuroImagerie de Recherche - Institut du Cerveau et de la Moelle épinière, ICM, Paris, France 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France
| | - Daniel García-Lorenzo
- 1 Centre de NeuroImagerie de Recherche - Institut du Cerveau et de la Moelle épinière, ICM, Paris, France 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France
| | - Romain Valabregue
- 1 Centre de NeuroImagerie de Recherche - Institut du Cerveau et de la Moelle épinière, ICM, Paris, France 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France
| | | | - Lea Marais
- 1 Centre de NeuroImagerie de Recherche - Institut du Cerveau et de la Moelle épinière, ICM, Paris, France 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France
| | - Bertrand Degos
- 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France 6 AP-HP, Hôpital de la Pitié Salpêtrière, Département de Neurologie, Paris, France
| | - Cecile Hubsch
- 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France 6 AP-HP, Hôpital de la Pitié Salpêtrière, Département de Neurologie, Paris, France
| | - Sara Fernández-Vidal
- 1 Centre de NeuroImagerie de Recherche - Institut du Cerveau et de la Moelle épinière, ICM, Paris, France 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France
| | - Eric Bardinet
- 1 Centre de NeuroImagerie de Recherche - Institut du Cerveau et de la Moelle épinière, ICM, Paris, France 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France
| | - Emmanuel Roze
- 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France 6 AP-HP, Hôpital de la Pitié Salpêtrière, Département de Neurologie, Paris, France
| | - Stéphane Lehéricy
- 1 Centre de NeuroImagerie de Recherche - Institut du Cerveau et de la Moelle épinière, ICM, Paris, France 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France 7 AP-HP, Hôpital de la Pitié Salpêtrière, Département de Neuroradiologie, Paris, France
| | - Marie Vidailhet
- 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France 6 AP-HP, Hôpital de la Pitié Salpêtrière, Département de Neurologie, Paris, France
| | - Sabine Meunier
- 2 Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Paris, France 3 CNRS, UMR 7225, Paris, France 4 Inserm, U 1127, Paris, France
| |
Collapse
|
19
|
Abstract
Essential tremor (ET) is one of the most common neurological diseases, with an estimated 7 million affected individuals in the United States. Postmortem studies in the past few years have resulted in new knowledge as well as a new formulation of disease pathophysiology. This new formulation centers on the notion that ET might be a disease of the cerebellum and, more specifically, the Purkinje cell (PC) population. Indeed, several investigators have proposed that ET may be a "Purkinjopathy." Supporting this formulation are data from controlled postmortem studies demonstrating (1) a range of morphological changes in the PC axon, (2) abnormalities in the position and orientation of PC bodies, (3) reduction in the number of PCs in some studies, (4) morphological changes in and pruning of the PC dendritic arbor with loss of dendritic spines, and (5) alterations in both the PC-basket cell interface and the PC-climbing fiber interface in ET cases. This new formulation has engendered some controversy and raised additional questions. Whether the constellation of changes observed in ET differs from that seen in other degenerative disorders of the cerebellum remains to be determined, although initial studies suggest the likely presence of a distinct profile of changes in ET.
Collapse
Affiliation(s)
- Elan D Louis
- Division of Movement Disorders, Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, USA
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW The last several years have witnessed a remarkable increase in research on essential tremor, with consequent advances in our understanding of this entity. An attempt to both summarize and frame this work has not been undertaken. RECENT FINDINGS Here, I show that observations on essential tremor arising from clinical practice/clinical studies have guided scientific studies of this disorder. In turn, the results of scientific studies are beginning to be translated back to the bedside to improve treatment. Recent essential tremor research has given rise to several novel and intriguing ideas about the disease. These include the following: essential tremor may represent a family of diseases rather than a single disease; essential tremor seems to be a disease of the cerebellum or cerebellar system; essential tremor may be neurodegenerative; low gamma aminobutyric acid tone seems to be a central feature of essential tremor. As with many emerging ideas, there is significant discussion and debate over these emerging ideas, and this fuels additional scientific studies. SUMMARY The flow of ideas from clinical observations about essential tremor, to their translation into scientific studies, and their translation back to the bedside, is expected to eventually lead to improvements at the patient interface.
Collapse
|
21
|
Louis ED, Rao AK. Tandem gait performance in essential tremor patients correlates with cognitive function. CEREBELLUM & ATAXIAS 2015; 1:19. [PMID: 26331043 PMCID: PMC4552146 DOI: 10.1186/s40673-014-0019-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 11/25/2014] [Indexed: 12/25/2022]
Abstract
Background Emerging yet separate literatures have highlighted gait/balance impairments (i.e., mild ataxia) and cognitive problems in patients with essential tremor (ET). However, the relationship between the two has not been studied. The goal of these analyses was to study the relationship between gait/balance impairments and cognitive problems in ET. One-hundred-twenty ET cases were enrolled in an epidemiological study at Columbia University Medical Center. A Telephone Interview for Cognitive Status (TICS, range = 0–41 [no deficits]) was administered and a videotaped assessment of tandem gait was performed, during which the number of missteps during 10-steps was counted. Results The mean TICS score was 35.7 (range 25–39), and mean number of tandem mis-steps was 2.9 (range 0–10). The number of tandem mis-steps was correlated with the TICS score (Spearman’s r = −0.245, p = 0.011, i.e., individuals who had more tandem gait difficulty also had more cognitive difficulty). In a multivariate analysis, tandem mis-steps were associated with TICS score (p = 0.04) independent of age and other factors. Conclusions More cognitive difficulty was associated with more tandem gait difficulty in ET. Ambulation often requires the concurrent use of both cognitive and motor neural systems; hence it is possible that the cognitive and gait problems in ET reflect an underlying pervasive disorder affecting both cognitive and motor circuits.
Collapse
Affiliation(s)
- Elan D Louis
- GH Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY USA ; Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY USA ; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY USA ; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, NY USA
| | - Ashwini K Rao
- GH Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY USA ; Program in Physical Therapy, Department of Rehabilitation & Regenerative Medicine, College of Physicians and Surgeons, Columbia University, New York, NY USA
| |
Collapse
|
22
|
Klaming R, Annese J. Functional anatomy of essential tremor: lessons from neuroimaging. AJNR Am J Neuroradiol 2014; 35:1450-7. [PMID: 23620075 DOI: 10.3174/ajnr.a3586] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The neuropathogenetic processes underlying essential tremor appear to cause subtle morphologic changes in neural networks that include multiple brain structures, primarily the cerebellum, brain stem, frontal lobes, and thalamus. One of the main challenges of neuroimaging in essential tremor is differentiating disease-specific markers from the spectrum of structural changes that occur due to aging. This review discusses recent neuroimaging studies in the light of current knowledge of the neuropsychology and pathology of the disease. We suggest that the application of multiple macroscopic and microscopic neuroimaging modalities, combined with personalized information relative to cognitive and behavioral symptoms, is the prerequisite for a comprehensive classification and correct diagnosis of essential tremor.
Collapse
Affiliation(s)
- R Klaming
- From The Brain Observatory, San Diego, California; and Department of Radiology, University of California, San Diego, San Diego, California
| | - J Annese
- From The Brain Observatory, San Diego, California; and Department of Radiology, University of California, San Diego, San Diego, California.
| |
Collapse
|
23
|
Benito-León J. Essential tremor: a neurodegenerative disease? TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2014; 4:252. [PMID: 25120943 PMCID: PMC4107287 DOI: 10.7916/d8765cg0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 06/29/2014] [Indexed: 12/01/2022]
Abstract
Background Essential tremor (ET) is one of the most common neurological disorders among adults, and is the most common of the many tremor disorders. It has classically been viewed as a benign monosymptomatic condition, yet over the past decade, a growing body of evidence indicates that ET is a progressive condition that is clinically heterogeneous, as it may be associated with a spectrum of clinical features, with both motor and non-motor elements. In this review, I will describe the most significant emerging milestones in research which, when taken together, suggest that ET is a neurodegenerative condition. Methods A PubMed search conducted in June 2014 crossing the terms “essential tremor” (ET) and “neurodegenerative” yielded 122 entries, 20 of which included the term “neurodegenerative” in the article title. This was supplemented by articles in the author's files that pertained to this topic. Results/Discussion There is an open and active dialogue in the medical community as to whether ET is a neurodegenerative disease, with considerable evidence in favor of this. Specifically, ET is a progressive disorder of aging associated with neuronal loss (reduction in Purkinje cells) as well as other post-mortem changes that occur in traditional neurodegenerative disorders. Along with this, advanced neuroimaging techniques are now demonstrating distinct structural changes, several of which are consistent with neuronal loss, in patients with ET. However, further longitudinal clinical and neuroimaging longitudinal studies to assess progression are required.
Collapse
Affiliation(s)
- Julián Benito-León
- Department of Neurology, University Hospital "12 de Octubre", Madrid, Spain ; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain ; Department of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
24
|
Abstract
For many years, little was written about the underlying biology of ET, despite its high prevalence. Discussions of disease mechanisms were dominated by a focus on tremor physiology. The traditional model of ET, the olivary model, was proposed in the 1970s. The model suffers from several critical problems, and its relevance to ET has been questioned. Recent mechanistic research has focused on the cerebellum. Clinical and neuroimaging studies strongly implicate the importance of this brain region in ET. Recent mechanistic research has been grounded more in tissue-based changes (i.e., postmortem studies of the brain). These studies have collectively and systematically identified a sizable number of changes in the ET cerebellum, and have led to a new model of ET, referred to as the cerebellar degenerative model. Hence, there is a renewed interest in the science behind the biology of ET. How the new understanding of ET will translate into treatment changes is an open question.
Collapse
Affiliation(s)
- Elan D Louis
- GH Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA,
| |
Collapse
|
25
|
Louis ED, Huang CC, Dyke JP, Long Z, Dydak U. Neuroimaging studies of essential tremor: how well do these studies support/refute the neurodegenerative hypothesis? TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2014; 4:235. [PMID: 24918024 PMCID: PMC4038743 DOI: 10.7916/d8df6pb8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 05/05/2014] [Indexed: 02/08/2023]
Abstract
Background Tissue-based research has recently led to a new patho-mechanistic model of essential tremor (ET)—the cerebellar degenerative model. We are not aware of a study that has reviewed the current neuroimaging evidence, focusing on whether the studies support or refute the neurodegenerative hypothesis of ET. This was our aim. Methods References for this review were identified by searches of PubMed (1966 to February 2014). Results Several neuroimaging methods have been used to study ET, most of them based on magnetic resonance imaging (MRI). The methods most specific to address the question of neurodegeneration are MRI-based volumetry, magnetic resonance spectroscopy, and diffusion-weighted imaging. Studies using each of these methods provide support for the presence of cerebellar degeneration in ET, finding reduced cerebellar brain volumes, consistent decreases in cerebellar N-acetylaspartate, and increased mean diffusivity. Other neuroimaging techniques, such as functional MRI and positron emission tomography (PET) are less specific, but still sensitive to potential neurodegeneration. These techniques are used for measuring a variety of brain functions and their impairment. Studies using these modalities also largely support cerebellar neuronal impairment. In particular, changes in 11C-flumazenil binding in PET studies and changes in iron deposition in an MRI study provide evidence along these lines. The composite data point to neuronal impairment and likely neuronal degeneration in ET. Discussion Recent years have seen a marked increase in the number of imaging studies of ET. As a whole, the combined data provide support for the presence of cerebellar neuronal degeneration in this disease.
Collapse
Affiliation(s)
- Elan D Louis
- GH Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, New York, USA ; Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York, USA ; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA ; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Chaorui C Huang
- Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, New York, USA
| | - Jonathan P Dyke
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
| | - Zaiyang Long
- School of Health Sciences, Purdue University, West Lafayette, Indiana, USA ; Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ulrike Dydak
- School of Health Sciences, Purdue University, West Lafayette, Indiana, USA ; Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
26
|
Wu Y, Ding J, Gao Y, Chen S, Li L, Li R. Mini Review: linkages between essential tremor and Parkinson's disease? Front Cell Neurosci 2013; 7:118. [PMID: 23914155 PMCID: PMC3728484 DOI: 10.3389/fncel.2013.00118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/07/2013] [Indexed: 11/17/2022] Open
Abstract
Essential tremor (ET) and Parkinson’s disease (PD) are two of the most common movement disorders. Tremors are the primary symptoms of ET and of some PD patients, the two are often mistaken for each other. Especially since there are no available differentiate tests for the tremor of ET or PD, the early diagnoses mainly based on clinical assessments of medical symptoms, family and medication history, and examination by physicians. There is increasing evidence suggesting an association between ET and PD, such as a similar tremor frequency, overlapping resting tremors (a typical PD tremor), postural tremors (mainly in ET patients) in both ET and PD patients, and many ET patients develop PD later in life. Although it is difficult to make a differential diagnosis of ET and tremor-dominant PD based on clinical assessment, recent developments of objective measurements, such as brain imaging, neuropathology, and genetic analysis, has opened a helpful window for distinguishing ET from PD. In this mini review, we included literatures of ET and PD studies and discussed various advanced methods for differential diagnosis between ET and PD such as neuroimaging, genetic markers, tremor intensity and frequency, and drug-responses.
Collapse
Affiliation(s)
- Yiwen Wu
- 1 Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine Shanghai, China
| | | | | | | | | | | |
Collapse
|