1
|
Hang D, Iqbal Z, Dolinski SY. Hyperventilation and Respiratory Alkalosis After Olanzapine for Insomnia: A Case Report. A A Pract 2021; 15:e01535. [PMID: 34673660 DOI: 10.1213/xaa.0000000000001535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Olanzapine is increasingly used as a sleep aid in hospitalized patients. Although thought to have less extrapyramidal effects, known side effects include oversedation, arrythmias, and hypotension. We present the unusual case of hyperventilation with respiratory alkalosis after the administration of olanzapine for insomnia in an elderly postoperative patient. This led to a second admission to the intensive care unit with invasive interventions including mechanical ventilation and vasopressor support. Caution must be exercised in prescribing antipsychotics for off-label use, especially in a population whose baseline characteristics can affect the pharmacokinetics of second-generation antipsychotics.
Collapse
Affiliation(s)
- Dustin Hang
- From the Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Anesthesiology, Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin
| | - Zafar Iqbal
- From the Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Anesthesiology, Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin
| | - Sylvia Y Dolinski
- From the Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Anesthesiology, Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin
| |
Collapse
|
2
|
Koller D, Almenara S, Mejía G, Saiz-Rodríguez M, Zubiaur P, Román M, Ochoa D, Wojnicz A, Martín S, Romero-Palacián D, Navares-Gómez M, Abad-Santos F. Safety and cardiovascular effects of multiple-dose administration of aripiprazole and olanzapine in a randomised clinical trial. Hum Psychopharmacol 2021; 36:1-12. [PMID: 32991788 DOI: 10.1002/hup.2761] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To assess adverse events (AEs) and safety of aripiprazole (ARI) and olanzapine (OLA) treatment. METHODS Twenty-four healthy volunteers receiving five daily oral doses of 10 mg ARI and 5 mg OLA in a crossover clinical trial were genotyped for 46 polymorphisms in 14 genes by qPCR. Drug plasma concentrations were measured by high-performance liquid chromatography tandem mass spectrometry. Blood pressure (BP) and 12-lead electrocardiogram were measured in supine position. AEs were also recorded. RESULTS ARI decreased diastolic BP on the first day and decreased QTc on the third and fifth day. OLA had a systolic and diastolic BP, heart rate and QTc lowering effect on the first day. Polymorphisms in ADRA2A, COMT, DRD3 and HTR2A genes were significantly associated to these changes. The most frequent adverse drug reactions (ADRs) to ARI were somnolence, headache, insomnia, dizziness, restlessness, palpitations, akathisia and nausea while were somnolence, dizziness, asthenia, constipation, dry mouth, headache and nausea to OLA. Additionally, HTR2A, HTR2C, DRD2, DRD3, OPRM1, UGT1A1 and CYP1A2 polymorphisms had a role in the development of ADRs. CONCLUSIONS OLA induced more cardiovascular changes; however, more ADRs were registered to ARI. In addition, some polymorphisms may explain the difference in the incidence of these effects among subjects.
Collapse
Affiliation(s)
- Dora Koller
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, School of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Susana Almenara
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, School of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Gina Mejía
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, School of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain.,UICEC Hospital Universitario de La Princesa, Platform SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Miriam Saiz-Rodríguez
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, School of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain.,Research Unit, Fundación Burgos por la Investigación de la Salud, Hospital Universitario de Burgos, Burgos, Spain
| | - Pablo Zubiaur
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, School of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Manuel Román
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, School of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain.,UICEC Hospital Universitario de La Princesa, Platform SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Dolores Ochoa
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, School of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain.,UICEC Hospital Universitario de La Princesa, Platform SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Aneta Wojnicz
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, School of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Samuel Martín
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, School of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain.,UICEC Hospital Universitario de La Princesa, Platform SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Daniel Romero-Palacián
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, School of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Marcos Navares-Gómez
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, School of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, School of Medicine, Universidad Autónoma de Madrid, Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain.,UICEC Hospital Universitario de La Princesa, Platform SCReN (Spanish Clinical Research Network), Instituto de Investigación Sanitaria La Princesa (IP), Madrid, Spain
| |
Collapse
|
3
|
Neurological Disorders and Risk of Arrhythmia. Int J Mol Sci 2020; 22:ijms22010188. [PMID: 33375447 PMCID: PMC7795827 DOI: 10.3390/ijms22010188] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/19/2020] [Accepted: 12/24/2020] [Indexed: 01/08/2023] Open
Abstract
Neurological disorders including depression, anxiety, post-traumatic stress disorder (PTSD), schizophrenia, autism and epilepsy are associated with an increased incidence of cardiovascular disorders and susceptibility to heart failure. The underlying molecular mechanisms that link neurological disorders and adverse cardiac function are poorly understood. Further, a lack of progress is likely due to a paucity of studies that investigate the relationship between neurological disorders and cardiac electrical activity in health and disease. Therefore, there is an important need to understand the spatiotemporal behavior of neurocardiac mechanisms. This can be advanced through the identification and validation of neurological and cardiac signaling pathways that may be adversely regulated. In this review we highlight how dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis, autonomic nervous system (ANS) activity and inflammation, predispose to psychiatric disorders and cardiac dysfunction. Moreover, antipsychotic and antidepressant medications increase the risk for adverse cardiac events, mostly through the block of the human ether-a-go-go-related gene (hERG), which plays a critical role in cardiac repolarization. Therefore, understanding how neurological disorders lead to adverse cardiac ion channel remodeling is likely to have significant implications for the development of effective therapeutic interventions and helps improve the rational development of targeted therapeutics with significant clinical implications.
Collapse
|
6
|
Velilla-Zancada SM, Prieto-Díaz MA, Escobar-Cervantes C, Manzano-Espinosa L. [Orthostatic hypotension; that great unknown]. Semergen 2016; 43:501-510. [PMID: 27865581 DOI: 10.1016/j.semerg.2016.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 09/14/2016] [Accepted: 09/20/2016] [Indexed: 12/01/2022]
Abstract
Orthostatic hypotension is an anomaly of growing interest in scientific research. Although certain neurogenic diseases are associated with this phenomenon, it can also be associated with non-neurological causes. Although orthostatic hypotension is defined by consensus as a decrease in the systolic blood pressure of at least 20mmHg, or a decrease in diastolic blood pressure of at least 10mmHg, within 3min of standing, the studies differ on how to diagnose it. Orthostatic hypotension is associated with certain cardiovascular risk factors and with drug treatment, but the results are contradictory. The purpose of this review is to update the knowledge about orthostatic hypotension and its treatment, as well as to propose a method to standardise its diagnosis.
Collapse
Affiliation(s)
- S M Velilla-Zancada
- Centro de Salud Espartero, Logroño, La Rioja, España; Grupo de trabajo de Hipertensión Arterial y Enfermedad Cardiovascular de SEMERGEN, España.
| | - M A Prieto-Díaz
- Grupo de trabajo de Hipertensión Arterial y Enfermedad Cardiovascular de SEMERGEN, España; Centro de Salud Vallobín-La Florida, Oviedo, Asturias, España
| | - C Escobar-Cervantes
- Grupo de trabajo de Hipertensión Arterial y Enfermedad Cardiovascular de SEMERGEN, España; Departamento de Cardiología, Hospital La Paz, Madrid, España
| | | |
Collapse
|