1
|
Sheffield Z, Paul P, Krishnakumar S, Pan D. Current Strategies and Future Directions of Wearable Biosensors for Measuring Stress Biochemical Markers for Neuropsychiatric Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411339. [PMID: 39688117 PMCID: PMC11791988 DOI: 10.1002/advs.202411339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/21/2024] [Indexed: 12/18/2024]
Abstract
Most wearable biosensors aimed at capturing psychological state target stress biomarkers in the form of physical symptoms that can correlate with dysfunction in the central nervous system (CNS). However, such markers lack the specificity needed for diagnostic or preventative applications. Wearable biochemical sensors (WBSs) have the potential to fill this gap, however, the technology is still in its infancy. Most WBSs proposed thus far target cortisol. Although cortisol detection is demonstrated as a viable method for approximating the extent and severity of psychological stress, the hormone also lacks specificity. Multiplex WBSs that simultaneously target cortisol alongside other viable stress-related biochemical markers (SBMs) can prove to be indispensable for understanding how psychological stress contributes to the pathophysiology of neuropsychiatric illnesses (NPIs) and, thus, lead to the discovery of new biomarkers and more objective clinical tools. However, none target more than one SBM implicated in NPIs. Till this review, cortisol's connection to dysfunctions in the CNS, to other SBMs, and their implication in various NPIs has not been discussed in the context of developing WBS technology. As such, this review is meant to inform the biosensing and neuropsychiatric communities of viable future directions and possible challenges for WBS technology for neuropsychiatric applications.
Collapse
Affiliation(s)
- Zach Sheffield
- Huck Institutes of the Life SciencesThe Pennsylvania State UniversityState CollegePA16802USA
- Department of Nuclear EngineeringThe Pennsylvania State UniversityState CollegePA16802USA
- The Center for Advanced Sensing TechnologyUniversity of Maryland – Baltimore CountyBaltimoreMD21250USA
- Chemical, Biochemicaland Environmental Engineering DepartmentUniversity of Maryland – Baltimore CountyBaltimoreMD21250USA
| | - Priyanka Paul
- Department of PediatricsUniversity of Maryland Baltimore School of MedicineBaltimoreMD21201USA
| | - Shraddha Krishnakumar
- Huck Institutes of the Life SciencesThe Pennsylvania State UniversityState CollegePA16802USA
| | - Dipanjan Pan
- Huck Institutes of the Life SciencesThe Pennsylvania State UniversityState CollegePA16802USA
- Department of Nuclear EngineeringThe Pennsylvania State UniversityState CollegePA16802USA
| |
Collapse
|
2
|
Chen S, Chen G, Li Y, Yue Y, Zhu Z, Li L, Jiang W, Shen Z, Wang T, Hou Z, Xu Z, Shen X, Yuan Y. Predicting the diagnosis of various mental disorders in a mixed cohort using blood-based multi-protein model: a machine learning approach. Eur Arch Psychiatry Clin Neurosci 2023; 273:1267-1277. [PMID: 36567366 DOI: 10.1007/s00406-022-01540-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/16/2022] [Indexed: 12/26/2022]
Abstract
The lack of objective diagnostic methods for mental disorders challenges the reliability of diagnosis. The study aimed to develop an easily accessible and useable objective method for diagnosing major depressive disorder (MDD), schizophrenia (SZ), bipolar disorder (BPD), and panic disorder (PD) using serum multi-protein. Serum levels of brain-derived neurotrophic factor (BDNF), VGF (non-acronymic), bicaudal C homolog 1 (BICC1), C-reactive protein (CRP), and cortisol, which are generally recognized to be involved in different pathogenesis of various mental disorders, were measured in patients with MDD (n = 50), SZ (n = 50), BPD (n = 55), and PD along with 50 healthy controls (HC). Linear discriminant analysis (LDA) was employed to construct a multi-classification model to classify these mental disorders. Both leave-one-out cross-validation (LOOCV) and fivefold cross-validation were applied to validate the accuracy and stability of the LDA model. All five serum proteins were included in the LDA model, and it was found to display a high overall accuracy of 96.9% when classifying MDD, SZ, BPD, PD, and HC groups. Multi-classification accuracy of the LDA model for LOOCV and fivefold cross-validation (within-study replication) reached 96.9 and 96.5%, respectively, demonstrating the feasibility of the blood-based multi-protein LDA model for classifying common mental disorders in a mixed cohort. The results suggest that combining multiple proteins associated with different pathogeneses of mental disorders using LDA may be a novel and relatively objective method for classifying mental disorders. Clinicians should consider combining multiple serum proteins to diagnose mental disorders objectively.
Collapse
Affiliation(s)
- Suzhen Chen
- Department of Psychosomatics and Psychiatry, School of Medicine, ZhongDa Hospital, Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Gang Chen
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yinghui Li
- Department of Psychosomatics and Psychiatry, School of Medicine, ZhongDa Hospital, Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
- Nanjing Medical University, Nanjing, 210009, China
| | - Yingying Yue
- Department of Psychosomatics and Psychiatry, School of Medicine, ZhongDa Hospital, Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Zixin Zhu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Lei Li
- School of Medicine, Southeast University, Nanjing, 210009, China
- Department of Sleep Medicine, The Fourth People's Hospital of Lianyungang, Lianyungang, 222000, China
| | - Wenhao Jiang
- Department of Psychosomatics and Psychiatry, School of Medicine, ZhongDa Hospital, Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Zhongxia Shen
- School of Medicine, Southeast University, Nanjing, 210009, China
- Department of Psychiatry, The Third People's Hospital of Huzhou, Huzhou, 313000, China
| | - Tianyu Wang
- Department of Psychosomatics and Psychiatry, School of Medicine, ZhongDa Hospital, Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Zhenghua Hou
- Department of Psychosomatics and Psychiatry, School of Medicine, ZhongDa Hospital, Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Zhi Xu
- Department of Psychosomatics and Psychiatry, School of Medicine, ZhongDa Hospital, Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China
| | - Xinhua Shen
- Department of Psychiatry, The Third People's Hospital of Huzhou, Huzhou, 313000, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, School of Medicine, ZhongDa Hospital, Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, China.
- School of Medicine, Southeast University, Nanjing, 210009, China.
- Nanjing Medical University, Nanjing, 210009, China.
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
3
|
Oxcarbazepine versus sodium valproate in treatment of acute mania: a double-blind randomized clinical trial. Int Clin Psychopharmacol 2022; 37:116-121. [PMID: 35121700 DOI: 10.1097/yic.0000000000000394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Oxcarbazepine as an anticonvulsant has been suggested as an effective drug in affective disorders. The present study was designed to compare the efficacy of oxcarbazepine and sodium valproate in the treatment of acute mania in the Iranian population. In a double-blind, randomized clinical trial, hospitalized bipolar patients in the acute manic phase who were admitted to Ibn-e-Sina psychiatric hospital in Mashhad city (north-eastern part of Iran) were enrolled. The diagnosis was confirmed using Structured Clinical Interview for DSM-IV-TR. Patients were then randomly allocated into two groups taking oxcarbazepine (900-2400 mg/day) and sodium valproate (about 20 mg/kg/day) for 6 weeks. Young Mania Rating Scale (YMRS), Clinical Global Impression Scale (CGI-S), and adverse effects of drugs were assessed at baseline and after 3 and 6 weeks. Mania symptoms based on mean scores of YMRS and CGI-S significantly decreased from baseline to endpoint in both treatments (P < 0.01). However, there was no significant difference between the two groups in terms of reduction of symptoms during times (P = 0.715 and P = 0.446, respectively) and adverse events (P > 0.05). This study confirmed the previous findings that indicate the efficacy of oxcarbazepine as same as sodium valproate. Moreover, its adverse effects resemble sodium valproate in the treatment of acutely manic patients.
Collapse
|
4
|
Zuo S, Liu J, Zuo A.
N
‐Hydroxy
‐1,6‐methano[10]annulene‐3,4‐dicarboximide/Co(
OAc
)
2
: A novel catalytic system for the aerobic oxidation of alkylarenes. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shengli Zuo
- State Key Laboratory of Chemical Resource Engineering, Department of Applied Chemistry, College of ChemistryBeijing University of Chemical Technology Beijing China
| | - Jianjun Liu
- State Key Laboratory of Chemical Resource Engineering, Department of Applied Chemistry, College of ChemistryBeijing University of Chemical Technology Beijing China
| | - Ang Zuo
- Department of Chemistry and BiochemistryUniversity of Notre Dame Notre Dame Indiana USA
| |
Collapse
|
5
|
Recent Advances in Homogeneous Metal-Catalyzed Aerobic C–H Oxidation of Benzylic Compounds. Catalysts 2018. [DOI: 10.3390/catal8120640] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Csp3–H oxidation of benzylic methylene compounds is an established strategy for the synthesis of aromatic ketones, esters, and amides. The need for more sustainable oxidizers has encouraged researchers to explore the use of molecular oxygen. In particular, homogeneous metal-catalyzed aerobic oxidation of benzylic methylenes has attracted much attention. This account summarizes the development of this oxidative strategy in the last two decades, examining key factors such as reaction yields, substrate:catalyst ratio, substrate scope, selectivity over other oxidation byproducts, and reaction conditions including solvents and temperature. Finally, several mechanistic proposals to explain the observed results will be discussed.
Collapse
|
6
|
Chen SF, Jou SB, Chen NC, Chuang HY, Huang CR, Tsai MH, Tan TY, Tsai WC, Chang CC, Chuang YC. Serum Levels of Brain-Derived Neurotrophic Factor and Insulin-Like Growth Factor 1 Are Associated With Autonomic Dysfunction and Impaired Cerebral Autoregulation in Patients With Epilepsy. Front Neurol 2018; 9:969. [PMID: 30524358 PMCID: PMC6256185 DOI: 10.3389/fneur.2018.00969] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022] Open
Abstract
Background: Brain-derived neurotrophic factor (BDNF) and insulin-like growth factor 1 (IGF-1) may regulate the autonomic nervous system (ANS) in epilepsy. The present study investigated the role of IGF-1 and BDNF in the regulation of autonomic functions and cerebral autoregulation in patients with epilepsy. Methods: A total of 57 patients with focal epilepsy and 35 healthy controls were evaluated and their sudomotor, cardiovagal, and adrenergic functions were assessed using a battery of ANS function tests, including the deep breathing, Valsalva maneuver, head-up tilting, and Q-sweat tests. Cerebral autoregulation was measured by transcranial doppler during the breath-holding test and the Valsalva maneuver. Interictal serum levels of BDNF and IGF-1 were measured with enzyme-linked immunosorbent assay kits. Results: During interictal period, reduced serum levels of BDNF and IGF-1, impaired autonomic functions, and decreased cerebral autoregulation were noted in patients with epilepsy compared with healthy controls. Reduced serum levels of BDNF correlated with age, adrenergic and sudomotor function, overall autonomic dysfunction, and the autoregulation index calculated in Phase II of the Valsalva maneuver, and showed associations with focal to bilateral tonic-clonic seizures. Reduced serum levels of IGF-1 were found to correlate with age and cardiovagal function, a parameter of cerebral autoregulation (the breath-hold index). Patients with a longer history of epilepsy, higher seizure frequency, and temporal lobe epilepsy had lower serum levels of IGF-1. Conclusions: Long-term epilepsy and severe epilepsy, particularly temporal lobe epilepsy, may perturb BDNF and IGF-1 signaling in the central autonomic system, contributing to the autonomic dysfunction and impaired cerebral autoregulation observed in patients with focal epilepsy.
Collapse
Affiliation(s)
- Shu-Fang Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shuo-Bin Jou
- Department of Neurology, Mackay Memorial Hospital and Mackay Medical College, Taipei, Taiwan
| | - Nai-Ching Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hung-Yi Chuang
- Department of Occupational and Environmental Medicine, Kaohsiung Medical University Hospital and School of Public Health, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Ren Huang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Meng-Han Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Teng-Yeow Tan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wan-Chen Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chiung-Chih Chang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yao-Chung Chuang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Neurology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biological Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|