1
|
Lee H, Kang SW, Jeong H, Kwon JT, Kim YO, Kim HJ. Alteration in Cngb1 Expression upon Maternal Immune Activation in a Mouse Model and Its Possible Association with Schizophrenia Susceptibility. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2021; 19:618-627. [PMID: 34690117 PMCID: PMC8553526 DOI: 10.9758/cpn.2021.19.4.618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/20/2020] [Accepted: 11/11/2020] [Indexed: 11/26/2022]
Abstract
Objective The cyclic nucleotide-gated channel (Cng) regulates synaptic efficacy in brain neurons by modulating Ca2+ levels in response to changes in cyclic nucleotide concentrations. This study investigated whether the expression of Cng channel, cyclic nucleotide-gated channel subunit beta 1 (Cngb1) exhibited any relationship with the pathophysiology of schizophrenia in an animal model and whether genetic polymorphisms of the human gene were associated with the progression of schizophrenia in a Korean population. Methods We investigated whether Cngb1 expression was related to psychiatric disorders in a mouse model of schizophrenia induced by maternal immune activation. A case-control study was conducted of 275 schizophrenia patients and 410 controls with single-nucleotide polymorphisms (SNPs) in the 5′-near region of CNGB1. Results Cngb1 expression was decreased in the prefrontal cortex in the mouse model. Furthermore, the genotype frequency of a SNP (rs3756314) of CNGB1 was associated with the risk of schizophrenia. Conclusion Our results suggest that CNGB1 might be associated with schizophrenia susceptibility and maternal immune activation. Consequently, it is hypothesized that CNGB1 may be involved in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Hwayoung Lee
- Department of Clinical Pharmacology, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Sung Wook Kang
- Cardiovascular Center of Excellence, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Hyeonjung Jeong
- Department of Clinical Pharmacology, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Jun-Tack Kwon
- Department of Clinical Pharmacology, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Young Ock Kim
- Department of Clinical Pharmacology, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Hak-Jae Kim
- Department of Clinical Pharmacology, Soonchunhyang University College of Medicine, Cheonan, Korea
| |
Collapse
|
2
|
Perić I, Costina V, Djordjević S, Gass P, Findeisen P, Inta D, Borgwardt S, Filipović D. Tianeptine modulates synaptic vesicle dynamics and favors synaptic mitochondria processes in socially isolated rats. Sci Rep 2021; 11:17747. [PMID: 34493757 PMCID: PMC8423821 DOI: 10.1038/s41598-021-97186-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/09/2021] [Indexed: 11/09/2022] Open
Abstract
Deregulation of synaptic function and neurotransmission has been linked with the development of major depression disorder (MDD). Tianeptine (Tian) has been used as antidepressant with anxiolytic properties and recently as a nootropic to improve cognitive performance, but its mechanism of action is unknown. We conducted a proteomic study on the hippocampal synaptosomal fractions of adult male Wistar rats exposed to chronic social isolation (CSIS, 6 weeks), an animal model of depression and after chronic Tian treatment in controls (nootropic effect) and CSIS-exposed rats (lasting 3 weeks of 6-week CSIS) (therapeutic effect). Increased expression of Syn1 and Camk2-related neurotransmission, vesicle transport and energy processes in Tian-treated controls were found. CSIS led to upregulation of proteins associated with actin cytoskeleton, signaling transduction and glucose metabolism. In CSIS rats, Tian up-regulated proteins involved in mitochondrial energy production, mitochondrial transport and dynamics, antioxidative defense and glutamate clearance, while attenuating the CSIS-increased glycolytic pathway and cytoskeleton organization proteins expression and decreased the expression of proteins involved in V-ATPase and vesicle endocytosis. Our overall findings revealed that synaptic vesicle dynamics, specifically exocytosis, and mitochondria-related energy processes might be key biological pathways modulated by the effective nootropic and antidepressant treatment with Tian and be a potential target for therapeutic efficacy of the stress-related mood disorders.
Collapse
Affiliation(s)
- Ivana Perić
- Department of Molecular Biology and Endocrinology, "VINČA", Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Victor Costina
- Institute for Clinical Chemistry, Medical Faculty Mannheim of the University of Heidelberg, University Hospital Mannheim, 68159, Mannheim, Germany
| | | | - Peter Gass
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Peter Findeisen
- Institute for Clinical Chemistry, Medical Faculty Mannheim of the University of Heidelberg, University Hospital Mannheim, 68159, Mannheim, Germany
| | - Dragoš Inta
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Stefan Borgwardt
- Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Dragana Filipović
- Department of Molecular Biology and Endocrinology, "VINČA", Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
3
|
Yoshizawa T, Shimada S, Takizawa Y, Makino T, Kanada Y, Ito Y, Ochiai T, Matsumoto K. Continuous measurement of locomotor activity during convalescence and acclimation in group-housed rats. Exp Anim 2019; 68:277-283. [PMID: 30760650 PMCID: PMC6699979 DOI: 10.1538/expanim.18-0097] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Locomotor activity is affected by a range of factors in addition to experimental
treatment, including the breeding environment. Appropriate convalescence and acclimation
are important for animal experiments, because environmental changes and physical burden
can result from surgery, transportation, and cage exchange. However, the duration that
locomotor activity is affected by these factors is currently unclear, because it has
traditionally been difficult to measure locomotor activity in multiple group-housed
animals in any location other than the analysis room. In the present study, we analyzed
the locomotor activity of group-housed rats using a nano tag® after surgery,
transportation, and cage exchange. The nano tag®, a new device for analyzing
activity, can measure locomotor activity in laboratory animals with no limitation on the
number of animals in same cage. Any type of cage can be used for analysis, at any time of
day, and in any location. Nano tags® were subcutaneously implanted in male rats
(F344/NSlc, 6 weeks of age) and locomotor activity was continuously measured after
surgery, transportation, and cage exchange. Significant activity changes were observed in
rats after transportation and cage exchange, 9 days and 3 h after the event, respectively.
The results suggest that continuous measurement of locomotor activity with nano
tags® can be used to monitor changes in activity induced by environmental
changes, and will be helpful for designing animal experiments analyzing locomotor
activity.
Collapse
Affiliation(s)
- Takahiro Yoshizawa
- Division of Animal Research, Research Center for Supports to Advanced Science, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Shin Shimada
- Division of Animal Research, Research Center for Supports to Advanced Science, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Yoshito Takizawa
- KISSEI COMTEC Co., Ltd., 4010-10 Wada, Matsumoto, Nagano 390-1293, Japan
| | - Tsuyoshi Makino
- Biotechnical Center, Japan SLC, Inc., 3-5-1 Aoihigashi, Naka-ku, Hamamatsu, Shizuoka 433-8114, Japan.,Retired
| | - Yasuhide Kanada
- Biotechnical Center, Japan SLC, Inc., 3-5-1 Aoihigashi, Naka-ku, Hamamatsu, Shizuoka 433-8114, Japan
| | - Yoshiharu Ito
- KISSEI COMTEC Co., Ltd., 4010-10 Wada, Matsumoto, Nagano 390-1293, Japan
| | - Toshiaki Ochiai
- Biotechnical Center, Japan SLC, Inc., 3-5-1 Aoihigashi, Naka-ku, Hamamatsu, Shizuoka 433-8114, Japan
| | - Kiyoshi Matsumoto
- Division of Animal Research, Research Center for Supports to Advanced Science, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| |
Collapse
|