1
|
Yu Z, Lin S, Gong X, Zou Z, Yang X, Ruan Y, Qian L, Liu Y, Si Z. The role of macroautophagy in substance use disorders. Ann N Y Acad Sci 2025; 1543:68-78. [PMID: 39714908 DOI: 10.1111/nyas.15272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Macroautophagy, a universal cellular process, sends cellular material to lysosomes for breakdown and is often activated by stressors like hypoxia or drug exposure. It is vital for protein balance, neurotransmitter release, synaptic function, and neuron survival. The role of macroautophagy in substance use disorders is dual. On one hand, substances like cocaine, methamphetamine, opiates, and alcohol can activate macroautophagy pathways to degrade various neuroinflammatory factors in neuronal cells, providing a protective function. On the other hand, long-term and excessive use of addictive substances can inhibit macroautophagy pathways, obstructing the fusion of autophagosomes with lysosomes and losing the original protective function. This review first summarizes the key proteins and signaling pathways involved in macroautophagy, including mTORC1, AMPK, and endoplasmic reticulum stress, and suggests that the regulation of macroautophagy plays a central role in drug-rewarding behavior and addiction. Second, we focus on the interactions between macroautophagy and neuroinflammation induced by drugs, evaluating the potential of macroautophagy modulators as therapeutic strategies for substance use disorder (SUD), and identifying autophagy-related biomarkers that can be used for early diagnosis and monitoring of treatment response. Our review summarizes the important scientific basis involved in macroautophagy pathways for the development of new therapies for SUD.
Collapse
Affiliation(s)
- Zhaoying Yu
- Department of Psychology, College of Teacher Education, Ningbo University, Ningbo, China
| | - Shujun Lin
- Department of Psychology, College of Teacher Education, Ningbo University, Ningbo, China
| | - Xinshuang Gong
- Department of Medicine, School of Public Health, Ningbo University, Ningbo, China
| | - Zhiting Zou
- Department of Psychology, College of Teacher Education, Ningbo University, Ningbo, China
| | - Xiangdong Yang
- Department of Psychology, College of Teacher Education, Ningbo University, Ningbo, China
| | - Yuer Ruan
- Department of Psychology, College of Teacher Education, Ningbo University, Ningbo, China
| | - Liyin Qian
- Department of Medicine, School of Public Health, Ningbo University, Ningbo, China
| | - Yu Liu
- Department of Medicine, School of Basic Medicine, Ningbo University, Ningbo, China
| | - Zizhen Si
- Department of Medicine, School of Basic Medicine, Ningbo University, Ningbo, China
| |
Collapse
|
2
|
Weng Y, Xie G. Increased GABBR2 Expression on Cell Membranes Causes Increased Ca2 + Inward Flow, Associated with Cognitive Impairment in Early Alzheimer's Disease. Biochem Genet 2024:10.1007/s10528-024-11004-z. [PMID: 39724481 DOI: 10.1007/s10528-024-11004-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
Alzheimer's disease (AD) and mild cognitive impairment (MCI) are a serious global public health problem. The aim of this study was to analyze the key molecular pathological mechanisms that occur in early AD progression as well as MCI. Expression profiling data from brain homogenates of 8 normal volunteers, and 6 patients with prodromal AD who had developed MCI were analyzed, and the data were obtained from GSE12685. Further, overexpression of GABBR2 was achieved in human neuroblastoma cell lines SH-SY5Y and BE(2)-M17 using expression plasmid transfection. GABBR2 was significantly overexpressed in brain tissues of patients with prodromal AD who had developed MCI, as compared to normal brains. Moreover, GABBR2 overexpressing cells showed a significant increase in intracellular Ca2+ concentration, a large amount of reactive oxygen species production, a large opening of the mitochondrial permeability transition pore and a significant increase in apoptosis compared with control cells. GABBR2 overexpression was significantly involved in early AD progression and MCI by causing cellular events such as intracellular Ca2+ imbalance, oxidative stress, and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yifei Weng
- Department of Neurology, The Affiliated People's Hospital of Ningbo University, No.251 East Baizhang Road, Ningbo, 315040, Zhejiang, China
| | - Guomin Xie
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, No.57 Xingning Road, Ningbo, 315040, Zhejiang, China.
| |
Collapse
|
3
|
Borrego-Ruiz A, Borrego JJ. Epigenetic Mechanisms in Aging: Extrinsic Factors and Gut Microbiome. Genes (Basel) 2024; 15:1599. [PMID: 39766866 PMCID: PMC11675900 DOI: 10.3390/genes15121599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Aging is a natural physiological process involving biological and genetic pathways. Growing evidence suggests that alterations in the epigenome during aging result in transcriptional changes, which play a significant role in the onset of age-related diseases, including cancer, cardiovascular disease, diabetes, and neurodegenerative disorders. For this reason, the epigenetic alterations in aging and age-related diseases have been reviewed, and the major extrinsic factors influencing these epigenetic alterations have been identified. In addition, the role of the gut microbiome and its metabolites as epigenetic modifiers has been addressed. RESULTS Long-term exposure to extrinsic factors such as air pollution, diet, drug use, environmental chemicals, microbial infections, physical activity, radiation, and stress provoke epigenetic changes in the host through several endocrine and immune pathways, potentially accelerating the aging process. Diverse studies have reported that the gut microbiome plays a critical role in regulating brain cell functions through DNA methylation and histone modifications. The interaction between genes and the gut microbiome serves as a source of adaptive variation, contributing to phenotypic plasticity. However, the molecular mechanisms and signaling pathways driving this process are still not fully understood. CONCLUSIONS Extrinsic factors are potential inducers of epigenetic alterations, which may have important implications for longevity. The gut microbiome serves as an epigenetic effector influencing host gene expression through histone and DNA modifications, while bidirectional interactions with the host and the underexplored roles of microbial metabolites and non-bacterial microorganisms such as fungi and viruses highlight the need for further research.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain;
| | - Juan J. Borrego
- Departamento de Microbiología, Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
4
|
Pence HH, Kilic E, Elibol B, Kuras S, Guzel M, Buyuk Y, Pence S. Brain microRNA profiles after exposure to heroin in rats. Exp Brain Res 2024; 243:24. [PMID: 39671092 DOI: 10.1007/s00221-024-06972-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024]
Abstract
Heroin addiction is one of the neuropsychiatric burdens that affects many genetic and epigenetic systems. While it is known that heroin may change the expressions of some genes in the brain during dependence, there is no detailed study related to which gene are mostly affected. Therefore, in the current study, we aimed to determine alterations in the miRNA profiles of rats' brains for providing a detailed analysis of molecular mechanisms in heroin addiction-related toxicology. Next generation global miRNA sequencing was used to predict potential miRNAs in prefrontal cortex (PC), hippocampus, ventral tegmental area (VTA), striatum, and Nucleus accumbens (NA) of rats that exposed to heroin by intravenous injections. The total daily dose was started with 2 mg/kg and ended with 10 mg/kg on the 10th day. In the striatum, miR-18a, miR-17-5p, miR-20a-5p, miR-106a, miR-301a-3p, miR872-5p, miR-15a-5p, miR-500-3p, and miR-339-5p expressions were upregulated by nearly 2-to-4 times with heroin. The expressions of hippocampal miR-153-3p, miR-130a-3p, miR-204-5p, miR-15b-5p, and miR-137-3p and the expressions of miR-872, miR-183-5p, miR-20a-5p, miR-325-5p, miR-379-5p, and miR-340-5p in the VTA were 2-times higher in the heroin-addicted rats. While there was nearly 2-times increase in the miR-129-1-3p and miR-3068-3p expressions in the NA, no change was noted in the PC due to heroin. The only heroin-dependent downregulation was observed in the expressions of striatal miR-450b-3p and miR-103-1-5p of VTA. These results suggested that heroin addiction might give harm to brain by altering cytokine balance and increasing neuroinflammation and apoptosis. In addition, neurons also try to compensate these abnormalities by enhancing neurogenesis and angiogenesis through several miRNAs in the different brain regions. In conclusion, the present study may provide a more integrated view of the molecular mechanism and a potential biomarker that will aid in clinical diagnosis and treatment of heroin-dependence.
Collapse
Affiliation(s)
- Halime Hanim Pence
- Department of Medical Biochemistry, Hamidiye School of Medicine, University of Health Sciences Türkiye, Istanbul, Turkey.
| | - Ertugrul Kilic
- Department of Physiology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Birsen Elibol
- Department of Medical Biology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Sibel Kuras
- Department of Medical Biochemistry, Hamidiye School of Medicine, University of Health Sciences Türkiye, Istanbul, Turkey
| | - Mustafa Guzel
- Department of Medical Pharmacology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Yalcin Buyuk
- Department of Forensic Art, Institute of Forensic Sciences and Legal Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Sadrettin Pence
- Department of Physiology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| |
Collapse
|
5
|
Choi MR, Chang HJ, Heo JH, Yum SH, Jo E, Kim M, Lee SR. Expression Profiling of Coding and Noncoding RNAs in the Endometrium of Patients with Endometriosis. Int J Mol Sci 2024; 25:10581. [PMID: 39408909 PMCID: PMC11476965 DOI: 10.3390/ijms251910581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
The aim of this study was to identify differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) in the endometrium of individuals with and without endometriosis (EMS) during the proliferative (P) and secretory (S) phases of the menstrual cycle. Tissues were obtained from 18 control (CT; P-phase [pCT], n = 8; S-phase [sCT], n = 13) and 23 EMS patients (P-phase [pEMS], n = 13; S-phase [sEMS], n = 12). DElncRNAs and DEmRNAs were analyzed using total RNA-sequencing. In P-phase, expression of NONHSAG019742.2 and NONHSAT120701.2 was significantly higher in EMS than control patients, that of while NONHSAG048398.2 and NONHSAG016560.2 was lower in EMS patients. In S-phase, expression of NONHSAT000959.2, NONHSAT203423.1, and NONHSAG053769.2 was significantly increased in EMS patients, while that of NONHSAG012105.2 and NONHSAG020839.2 was lower. In addition, the expression of HSD11B2, THBS1, GPX3, and SHISA6 was similar to that of neighboring lncRNAs in both P- and S-phases. In contrast, ELP3 and NR4A1, respectively, were up- or downregulated in pEMS tissues. In sEMS, expression of LAMB3 and HIF1A was increased, while expression of PAM was reduced. Our findings on lncRNAs and mRNAs encourage not only exploration of the potential clinical applications of lncRNAs and mRNAs as prognostic or diagnostic biomarkers for EMS but also to gain valuable insights into its pathogenesis.
Collapse
Affiliation(s)
- Mi Ran Choi
- Laboratory Animal Research Center, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
| | - Hye Jin Chang
- Department of Obstetrics and Gynecology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (H.J.C.); (S.H.Y.); (E.J.)
| | - Jeong-Hyeon Heo
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
| | - Sun Hyung Yum
- Department of Obstetrics and Gynecology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (H.J.C.); (S.H.Y.); (E.J.)
| | - Eunae Jo
- Department of Obstetrics and Gynecology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (H.J.C.); (S.H.Y.); (E.J.)
| | - Miran Kim
- Department of Obstetrics and Gynecology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (H.J.C.); (S.H.Y.); (E.J.)
| | - Sang-Rae Lee
- Laboratory Animal Research Center, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
| |
Collapse
|
6
|
Falconnier C, Caparros-Roissard A, Decraene C, Lutz PE. Functional genomic mechanisms of opioid action and opioid use disorder: a systematic review of animal models and human studies. Mol Psychiatry 2023; 28:4568-4584. [PMID: 37723284 PMCID: PMC10914629 DOI: 10.1038/s41380-023-02238-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/20/2023]
Abstract
In the past two decades, over-prescription of opioids for pain management has driven a steep increase in opioid use disorder (OUD) and death by overdose, exerting a dramatic toll on western countries. OUD is a chronic relapsing disease associated with a lifetime struggle to control drug consumption, suggesting that opioids trigger long-lasting brain adaptations, notably through functional genomic and epigenomic mechanisms. Current understanding of these processes, however, remain scarce, and have not been previously reviewed systematically. To do so, the goal of the present work was to synthesize current knowledge on genome-wide transcriptomic and epigenetic mechanisms of opioid action, in primate and rodent species. Using a prospectively registered methodology, comprehensive literature searches were completed in PubMed, Embase, and Web of Science. Of the 2709 articles identified, 73 met our inclusion criteria and were considered for qualitative analysis. Focusing on the 5 most studied nervous system structures (nucleus accumbens, frontal cortex, whole striatum, dorsal striatum, spinal cord; 44 articles), we also conducted a quantitative analysis of differentially expressed genes, in an effort to identify a putative core transcriptional signature of opioids. Only one gene, Cdkn1a, was consistently identified in eleven studies, and globally, our results unveil surprisingly low consistency across published work, even when considering most recent single-cell approaches. Analysis of sources of variability detected significant contributions from species, brain structure, duration of opioid exposure, strain, time-point of analysis, and batch effects, but not type of opioid. To go beyond those limitations, we leveraged threshold-free methods to illustrate how genome-wide comparisons may generate new findings and hypotheses. Finally, we discuss current methodological development in the field, and their implication for future research and, ultimately, better care.
Collapse
Affiliation(s)
- Camille Falconnier
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR 3212, 67000, Strasbourg, France
| | - Alba Caparros-Roissard
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR 3212, 67000, Strasbourg, France
| | - Charles Decraene
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR 3212, 67000, Strasbourg, France
- Centre National de la Recherche Scientifique, Université de Strasbourg, Laboratoire de Neurosciences Cognitives et Adaptatives UMR 7364, 67000, Strasbourg, France
| | - Pierre-Eric Lutz
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR 3212, 67000, Strasbourg, France.
- Douglas Mental Health University Institute, Montreal, QC, Canada.
| |
Collapse
|
7
|
Tang H, Zhang Y, Xun Y, Yu J, Lu Y, Zhang R, Dang W, Zhu F, Zhang J. Association between methylation in the promoter region of the GAD2 gene and opioid use disorder. Brain Res 2023; 1812:148407. [PMID: 37182687 DOI: 10.1016/j.brainres.2023.148407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
DNA methylation is one of the epigenetic mechanisms involved in opioid use disorder. GAD2 is a key catalyticase in gamma amino butyric acid (GABA) synthesis from glutamate, that is implicated in opioid-induced rewarding effect. To reveal the relationship and the underlying mechanism between GAD2 gene methylation and opioid use disorder, we first examined and compared the methylation levels in the promoter region of the GAD2 gene in peripheral blood between 120 patients with opioid use disorder and 110 healthy controls by using a targeted approach. A diagnostic model with methylation biomarkers was established to distinguish opioid use disorder and healthy control groups. Correlations between methylation levels in the promoter region of the GAD2 gene and the duration and dosage of opioid use were then determined. Finally, the transcription factors that potentially bind to the target sequences including the detected CpG sites were predicted with the JASPAR database. Our results demonstrated that hypermethylation in the promoter region of the GAD2 gene was associated with opioid use disorder. A diagnostic model based on 10 methylation biomarkers could distinguish the opioid use disorder and healthy control groups. Several correlations between methylation levels in the GAD2 gene promoter and the duration and dosage of opioid use were observed. Transcription factors TFAP2A, Arnt and Runx1 were predicted to bind to the target sequences including several CpG sites detected in the present study in the GAD2 gene promoter. Our findings highlight and extend the role of DNA methylation in the GAD2 gene in opioid use disorder.
Collapse
Affiliation(s)
- Hua Tang
- Healthy Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Xi'an International Medical Center Hospital, Xi'an, Shaanxi 710061, China
| | - Yudan Zhang
- Healthy Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yufeng Xun
- Healthy Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jiao Yu
- Healthy Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Ye Lu
- Healthy Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Rui Zhang
- Department of Psychiatry, Xi'an Mental Health Center, Xi'an, Shaanxi 710061, China
| | - Wei Dang
- Department of Psychiatry, Xi'an Mental Health Center, Xi'an, Shaanxi 710061, China
| | - Feng Zhu
- Healthy Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jianbo Zhang
- Healthy Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Key Laboratory of National Health Commission for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
8
|
Siecinski SK, Giamberardino SN, Spanos M, Hauser AC, Gibson JR, Chandrasekhar T, Trelles MDP, Rockhill CM, Palumbo ML, Cundiff AW, Montgomery A, Siper P, Minjarez M, Nowinski LA, Marler S, Kwee LC, Shuffrey LC, Alderman C, Weissman J, Zappone B, Mullett JE, Crosson H, Hong N, Luo S, She L, Bhapkar M, Dean R, Scheer A, Johnson JL, King BH, McDougle CJ, Sanders KB, Kim SJ, Kolevzon A, Veenstra-VanderWeele J, Hauser ER, Sikich L, Gregory SG. Genetic and epigenetic signatures associated with plasma oxytocin levels in children and adolescents with autism spectrum disorder. Autism Res 2023; 16:502-523. [PMID: 36609850 PMCID: PMC10023458 DOI: 10.1002/aur.2884] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023]
Abstract
Oxytocin (OT), the brain's most abundant neuropeptide, plays an important role in social salience and motivation. Clinical trials of the efficacy of OT in autism spectrum disorder (ASD) have reported mixed results due in part to ASD's complex etiology. We investigated whether genetic and epigenetic variation contribute to variable endogenous OT levels that modulate sensitivity to OT therapy. To carry out this analysis, we integrated genome-wide profiles of DNA-methylation, transcriptional activity, and genetic variation with plasma OT levels in 290 participants with ASD enrolled in a randomized controlled trial of OT. Our analysis identified genetic variants with novel association with plasma OT, several of which reside in known ASD risk genes. We also show subtle but statistically significant association of plasma OT levels with peripheral transcriptional activity and DNA-methylation profiles across several annotated gene sets. These findings broaden our understanding of the effects of the peripheral oxytocin system and provide novel genetic candidates for future studies to decode the complex etiology of ASD and its interaction with OT signaling and OT-based interventions. LAY SUMMARY: Oxytocin (OT) is an abundant chemical produced by neurons that plays an important role in social interaction and motivation. We investigated whether genetic and epigenetic factors contribute to variable OT levels in the blood. To this, we integrated genetic, gene expression, and non-DNA regulated (epigenetic) signatures with blood OT levels in 290 participants with autism enrolled in an OT clinical trial. We identified genetic association with plasma OT, several of which reside in known autism risk genes. We also show statistically significant association of plasma OT levels with gene expression and epigenetic across several gene pathways. These findings broaden our understanding of the factors that influence OT levels in the blood for future studies to decode the complex presentation of autism and its interaction with OT and OT-based treatment.
Collapse
Affiliation(s)
- Stephen K Siecinski
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | | | - Marina Spanos
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Annalise C Hauser
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Jason R Gibson
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Tara Chandrasekhar
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - M D Pilar Trelles
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carol M Rockhill
- Department of Psychiatry, Seattle Children’s Hospital and the University of Washington, Seattle, WA, USA
| | - Michelle L Palumbo
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | - Paige Siper
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mendy Minjarez
- Department of Psychiatry, Seattle Children’s Hospital and the University of Washington, Seattle, WA, USA
| | - Lisa A Nowinski
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sarah Marler
- Department of Psychiatry, Vanderbilt University, Nashville, TN, USA
| | - Lydia C Kwee
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | | | - Cheryl Alderman
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Jordana Weissman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brooke Zappone
- Department of Psychiatry, Seattle Children’s Hospital and the University of Washington, Seattle, WA, USA
| | - Jennifer E Mullett
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Hope Crosson
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Natalie Hong
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Sheng Luo
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Lilin She
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Manjushri Bhapkar
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Russell Dean
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Abby Scheer
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Jacqueline L Johnson
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bryan H King
- Department of Psychiatry, Seattle Children’s Hospital and the University of Washington, Seattle, WA, USA
| | - Christopher J McDougle
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kevin B Sanders
- Department of Psychiatry, Vanderbilt University, Nashville, TN, USA
| | - Soo-Jeong Kim
- Department of Psychiatry, Seattle Children’s Hospital and the University of Washington, Seattle, WA, USA
| | - Alexander Kolevzon
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Elizabeth R Hauser
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Linmarie Sikich
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Simon G Gregory
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
9
|
Gornalusse G, Spengler RM, Sandford E, Kim Y, Levy C, Tewari M, Hladik F, Vojtech L. Men who inject opioids exhibit altered tRNA-Gly-GCC isoforms in semen. Mol Hum Reprod 2023; 29:gaad003. [PMID: 36661332 PMCID: PMC9976897 DOI: 10.1093/molehr/gaad003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/05/2022] [Indexed: 01/21/2023] Open
Abstract
In addition to their role in protein translation, tRNAs can be cleaved into shorter, biologically active fragments called tRNA fragments (tRFs). Specific tRFs from spermatocytes can propagate metabolic disorders in second generations of mice. Thus, tRFs in germline cells are a mechanism of epigenetic inheritance. It has also been shown that stress and toxins can cause alterations in tRF patterns. We were therefore interested in whether injecting illicit drugs, a major stressor, impacts tRFs in germline cells. We sequenced RNA from spermatocytes and from semen-derived exosomes from people who inject illicit drugs (PWID) and from non-drug using controls, both groups of unknown fertility status. All PWID injected opioids daily, but most also used other illicit drugs. The tRF cleavage products from Gly-GCC tRNA were markedly different between spermatocytes from PWID compared to controls. Over 90% of reads in controls mapped to shorter Gly-GCC tRFs, while in PWID only 45% did. In contrast, only 4.1% of reads in controls mapped to a longer tRFs versus 45.6% in PWID. The long/short tRF ratio was significantly higher in PWID than controls (0.23 versus 0.16, P = 0.0128). We also report differential expression of a group of small nucleolar RNAs (snoRNAs) in semen-derived exosomes, including, among others, ACA14a, U19, and U3-3. Thus, PWID exhibited an altered cleavage pattern of tRNA-Gly-GCC in spermatocytes and an altered cargo of snoRNAs in semen-derived exosomes. Participants were not exclusively using opioids and were not matched with controls in terms of diet, chronic disease, or other stressors, so our finding are not conclusively linked to opioid use. However, all individuals in the PWID group did inject heroin daily. Our study indicates a potential for opioid injection and/or its associated multi-drug use habits and lifestyle changes to influence epigenetic inheritance.
Collapse
Affiliation(s)
- Germán Gornalusse
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Ryan M Spengler
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Erin Sandford
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yeseul Kim
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Claire Levy
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| | - Muneesh Tewari
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Florian Hladik
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Lucia Vojtech
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA
| |
Collapse
|
10
|
Choi MR, Jin YB, Kim HN, Lee H, Chai YG, Lee SR, Kim DJ. Differential Gene Expression in the Hippocampi of Nonhuman Primates Chronically Exposed to Methamphetamine, Cocaine, or Heroin. Psychiatry Investig 2022; 19:538-550. [PMID: 35903056 PMCID: PMC9334808 DOI: 10.30773/pi.2022.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/11/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Methamphetamine (MA), cocaine, and heroin cause severe public health problems as well as impairments in neural plasticity and cognitive function in the hippocampus. This study aimed to identify the genes differentially expressed in the hippocampi of cynomolgus monkeys in response to these drugs. METHODS After the monkeys were chronically exposed to MA, cocaine, and heroin, we performed large-scale gene expression profiling of the hippocampus using RNA-Seq technology and functional annotation of genes differentially expressed. Some genes selected from RNA-Seq analysis data were validated with reverse transcription-quantitative polymerase chain reaction (RT-qPCR). And the expression changes of ADAM10 protein were assessed using immunohistochemistry. RESULTS The changes in genes related to axonal guidance (PTPRP and KAL1), the cell cycle (TLK2), and the regulation of potassium ions (DPP10) in the drug-treated groups compared to the control group were confirmed using RT-qPCR. Comparative analysis of all groups showed that among genes related to synaptic long-term potentiation, CREBBP and GRIN3A were downregulated in both the MA- and heroin-treated groups compared to the control group. In particular, the mRNA and protein expression levels of ADAM10 were decreased in the MA-treated group but increased in the cocaine-treated group compared to the control group. CONCLUSION These results provide insights into the genes that are upregulated and downregulated in the hippocampus by the chronic administration of MA, cocaine, or heroin and basic information for developing novel drugs for the treatment of hippocampal impairments caused by drug abuse.
Collapse
Affiliation(s)
- Mi Ran Choi
- Laboratory Animal Research Center, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Yeung-Bae Jin
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Han-Na Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Heejin Lee
- Department of Psychiatry, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| | - Young Gyu Chai
- Department of Molecular and Life Sciences, Hanyang University, Ansan, Republic of Korea
| | - Sang-Rae Lee
- Laboratory Animal Research Center, Ajou University School of Medicine, Suwon, Republic of Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Dai-Jin Kim
- Department of Psychiatry, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
11
|
Abstract
This paper is the forty-third consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2020 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
12
|
Identification of Morphine and Heroin-Treatment in Mice Using Metabonomics. Metabolites 2021; 11:metabo11090607. [PMID: 34564423 PMCID: PMC8467231 DOI: 10.3390/metabo11090607] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
Although heroin and morphine are structural analogues and morphine is a metabolite of heroin, it is not known how the effect of each substance on metabolites in vivo differs. Heroin and morphine were administered to C57BL/6J mice in increasing doses from 2 to 25 and 3 to 9 mg kg−1 (twice a day, i.p.), respectively, for 20 days. The animals underwent withdrawal for 5 days and were readministered the drugs after 10 days. Serum and urine analytes were profiled using gas chromatography-mass spectrometry (GC-MS), and metabolic patterns were evaluated based on metabonomics data. Metabonomics data showed that heroin administration changed metabolic pattern, and heroin withdrawal did not quickly restore it to baseline levels. A relapse of heroin exposure changed metabolic pattern again. In contrast, although the administration of morphine changed metabolic pattern, whether from morphine withdrawal or relapse, metabolic pattern was similar to control levels. The analysis of metabolites showed that both heroin and morphine interfered with lipid metabolism, the tricarboxylic acid (TCA) cycle and amino acid metabolism. In addition, both heroin and morphine increased the levels of 3-hydroxybutyric acid and citric acid but decreased the serum levels of 2-ketoglutaric acid and tryptophan. Moreover, heroin and morphine reduced the levels of aconitic acid, cysteine, glycine, and oxalic acid in urine. The results show 3-Hydroxybutyric acid, tryptophan, citric acid and 2-ketoglutaric acid can be used as potential markers of opiate abuse in serum, while oxalic acid, aconitic acid, cysteine, and glycine can be used as potential markers in urine.
Collapse
|