1
|
Martinez B, Peplow PV. MicroRNAs as potential biomarkers for diagnosis of attention deficit hyperactivity disorder. Neural Regen Res 2024; 19:557-562. [PMID: 37721284 PMCID: PMC10581556 DOI: 10.4103/1673-5374.380880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/25/2023] [Accepted: 06/14/2023] [Indexed: 09/19/2023] Open
Abstract
Inappropriate levels of hyperactivity, impulsivity, and inattention characterize attention deficit hyperactivity disorder, a common childhood-onset neuropsychiatric disorder. The cognitive function and learning ability of children with attention deficit hyperactivity disorder are affected, and these symptoms may persist to adulthood if they are not treated. The diagnosis of attention deficit hyperactivity disorder is only based on symptoms and objective tests for attention deficit hyperactivity disorder are missing. Treatments for attention deficit hyperactivity disorder in children include medications, behavior therapy, counseling, and education services which can relieve many of the symptoms of attention deficit hyperactivity disorder but cannot cure it. There is a need for a molecular biomarker to distinguish attention deficit hyperactivity disorder from healthy subjects and other neurological conditions, which would allow for an earlier and more accurate diagnosis and appropriate treatment to be initiated. Abnormal expression of microRNAs is connected to brain development and disease and could provide novel biomarkers for the diagnosis and prognosis of attention deficit hyperactivity disorder. The recent studies reviewed had performed microRNA profiling in whole blood, white blood cells, blood plasma, and blood serum of children with attention deficit hyperactivity disorder. A large number of microRNAs were dysregulated when compared to healthy controls and with some overlap between individual studies. From the studies that had included a validation set of patients and controls, potential candidate biomarkers for attention deficit hyperactivity disorder in children could be miR-140-3p, let-7g-5p, -30e-5p, -223-3p, -142-5p, -486-5p, -151a-3p, -151a-5p, and -126-5p in total white blood cells, and miR-4516, -6090, -4763-3p, -4281, -4466, -101-3p, -130a-3p, -138-5p, -195-5p, and -106b-5p in blood serum. Further studies are warranted with children and adults with attention deficit hyperactivity disorder, and consideration should be given to utilizing rat models of attention deficit hyperactivity disorder. Animal studies could be used to confirm microRNA findings in human patients and to test the effects of targeting specific microRNAs on disease progression and behavior.
Collapse
Affiliation(s)
- Bridget Martinez
- Department of Pharmacology, University of Nevada-Reno, Reno, USA
- Department of Medicine, University of Nevada-Reno, Reno, USA
| | - Philip V. Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Zhong L, He H, Zhang J, Gao X, Yin F, Zuo P, Song R. Gene Interaction of Dopaminergic Synaptic Pathway Genes in Attention-Deficit Hyperactivity Disorder: a Case-Control Study in Chinese Children. Mol Neurobiol 2024; 61:42-54. [PMID: 37578679 PMCID: PMC10791714 DOI: 10.1007/s12035-023-03523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023]
Abstract
Attention-deficit hyperactivity disorder is a highly inherited neurodevelopmental disorder. Previous genetic research has linked ADHD to certain genes in the dopaminergic synaptic pathway. Nonetheless, research on this relationship has produced varying results across various populations. China is a multi-ethnic country with its own unique genetic characteristics. Therefore, such a population can provide useful information about the relationship between gene polymorphisms in dopaminergic synaptic pathways and ADHD. This study looked at the genetic profiles of 284 children in China's Xinjiang. In total, 142 ADHD children and 142 control subjects were enrolled. Following the extraction of DNA from oral mucosal cells, 13 SNPs for three candidate genes (SLC6A3, DRD2, and GRIN2B) in the dopaminergic synaptic pathway of ADHD were screened. Based on the results of single nucleotide polymorphism (SNP) analyses, we found that the DRD2 gene variants rs6277 and rs6275, and the SLC6A3 gene variant rs2652511, were significantly associated with ADHD in boys and girls, respectively, after adjusting for false discovery rate (FDR) in terms of allele frequencies. Furthermore, our generalized multifactorial downscaling approach identified a significant association between rs6275 and rs1012586. These findings suggest that DRD2 and SLC6A3 genes have a crucial role in ADHD susceptibility. Additionally, we observed that the interaction between GRIN2B and DRD2 genes may contribute to the susceptibility of Chinese children with ADHD.
Collapse
Affiliation(s)
- Lin Zhong
- Medical College of Shihezi University, Xinjiang, Shihezi, 832000, China
| | - Hongyao He
- Medical College of Shihezi University, Xinjiang, Shihezi, 832000, China
| | - Jing Zhang
- Medical College of Shihezi University, Xinjiang, Shihezi, 832000, China
| | - Xiaoyan Gao
- Medical College of Shihezi University, Xinjiang, Shihezi, 832000, China
| | - Feifei Yin
- Medical College of Shihezi University, Xinjiang, Shihezi, 832000, China
| | - Pengxiang Zuo
- Medical College of Shihezi University, Xinjiang, Shihezi, 832000, China.
| | - Ranran Song
- Department of Maternal and Child Health and MOE Key Lab of Environment and Health, School of Public Health, Huazhong University of Science and Technology, Wuhan, 430000, China.
| |
Collapse
|
3
|
Dypås LB, Duale N, Olsen AK, Bustamante M, Maitre L, Escaramis G, Julvez J, Aguilar-Lacasaña S, Andrusaityte S, Casas M, Vafeiadi M, Grazuleviciene R, Heude B, Lepeule J, Urquiza J, Wright J, Yang TC, Vrijheid M, Gützkow KB. Blood miRNA levels associated with ADHD traits in children across six European birth cohorts. BMC Psychiatry 2023; 23:696. [PMID: 37749515 PMCID: PMC10521440 DOI: 10.1186/s12888-023-05199-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/17/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) is a prevalent and highly heritable neurodevelopmental disorder of major societal concern. Diagnosis can be challenging and there are large knowledge gaps regarding its etiology, though studies suggest an interplay of genetic and environmental factors involving epigenetic mechanisms. MicroRNAs (miRNAs) show promise as biomarkers of human pathology and novel therapies, and here we aimed to identify blood miRNAs associated with traits of ADHD as possible biomarker candidates and further explore their biological relevance. METHODS Our study population consisted of 1126 children (aged 5-12 years, 46% female) from the Human Early Life Exposome study, a study spanning six ongoing population-based European birth cohorts. Expression profiles of miRNAs in whole blood samples were quantified by microarray and tested for association with ADHD-related measures of behavior and neuropsychological functions from questionnaires (Conner's Rating Scale and Child Behavior Checklist) and computer-based tests (the N-back task and Attention Network Test). RESULTS We identified 29 miRNAs significantly associated (false discovery rate < .05) with the Conner's questionnaire-rated trait hyperactivity, 15 of which have been linked to ADHD in previous studies. Investigation into their biological relevance revealed involvement in several pathways related to neurodevelopment and function, as well as being linked with other neurodevelopmental or psychiatric disorders known to overlap with ADHD both in symptomology, genetic risk, and co-occurrence, such as autism spectrum disorder or schizophrenia. An additional three miRNAs were significantly associated with Conner's-rated inattention. No associations were found with questionnaire-rated total ADHD index or with computer-based tests. CONCLUSIONS The large overlap of our hyperactivity-associated miRNAs with previous studies on ADHD is intriguing and warrant further investigation. Though this study should be considered explorative and preliminary, these findings contribute towards identifying a set of miRNAs for use as blood-based biomarkers to aid in earlier and easier ADHD diagnosis.
Collapse
Affiliation(s)
- Lene B Dypås
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway.
| | - Nur Duale
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ann-Karin Olsen
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Mariona Bustamante
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Lea Maitre
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Geòrgia Escaramis
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Department of Biomedical Sciences, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Jordi Julvez
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Clinical and Epidemiological Neuroscience (NeuroÈpia), Institut d'investigació Sanitària Pere Virgili (IISPV), Reus, Catalonia, Spain
| | - Sofia Aguilar-Lacasaña
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Sandra Andrusaityte
- Department of Environmental Science, Vytautas Magnus University, Kaunas, Lithuania
| | - Maribel Casas
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Marina Vafeiadi
- Department of Social Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | | | - Barbara Heude
- Centre of Research in Epidemiology and Statistics (CRESS), Inserm, Université de Paris, Paris, France
| | - Johanna Lepeule
- Université Grenoble Alpes, INSERM, CNRS, Institute for Advanced Biosciences (IAB), Team of Environmental Epidemiology Applied to Development and Respiratory Health, La Tronche, France
| | - Jose Urquiza
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - John Wright
- Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Tiffany C Yang
- Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Martine Vrijheid
- Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Kristine B Gützkow
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
4
|
Wu W, Tan K, Xu W, Liu J, Lv Z. Pathogenicity of p.Phe147del in RET in familial Hirschsprung's disease. Am J Transl Res 2023; 15:2690-2702. [PMID: 37193168 PMCID: PMC10182518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/15/2023] [Indexed: 05/18/2023]
Abstract
OBJECTIVE The study aimed to explore the pathogenicity of RET p.Phe147del in a Hirschsprung'irschspru (HSCR) family and facilitate the deeper understanding of HSCR families. METHODS Whole-exome sequencing (WES) was performed to decipher a HSCR family. We used a "GlycoEP" tool to analyze RET protein glycosylation. A series of molecular biological approaches including mutated plasmid construction, cell transfection, polymerase chain reaction, immunofluorescence and immunoblotting were introduced to determine the mutation status and altered expression of RET as well as its related genes or proteins. MG132 was applied to analyze the mechanism of mutated RET. RESULTS WES and Sanger results revealed that p.Phe147del in-frame mutation (IM) was a potential pathogenetic factor for familial HSCR. Moreover, the IM led to disrupted N-glycosylation of RET accompanied with protein structural change, resulting in the decreased transcriptional and protein level of RET, CCND1, VEGF and BCL2, and the decreased protein level of phosphorylated ERK and STAT3. Further studies revealed that the IM-evoked RET decline was reversed by inhibiting proteosome in a dose dependent manner, thus suggesting that the decrease in intracellular RET protein levels interrupted the transportation of RET protein from the cytoplasm to the cell surface. CONCLUSION The newly found p.Phe147del IM of RET is pathogenic to familial HSCR and it disrupts RET structure and abundance via the proteasome pathway, representing evidence for the early prevention, clinical diagnosis and treatment of HSCR.
Collapse
Affiliation(s)
- Wei Wu
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University Shanghai, China
| | - Kezhe Tan
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University Shanghai, China
| | - Weijue Xu
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University Shanghai, China
| | - Jiangbin Liu
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University Shanghai, China
| | - Zhibao Lv
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University Shanghai, China
| |
Collapse
|
5
|
DNA methylation changes and increased mRNA expression of coagulation proteins, factor V and thrombomodulin in Fuchs endothelial corneal dystrophy. Cell Mol Life Sci 2023; 80:62. [PMID: 36773096 PMCID: PMC9922242 DOI: 10.1007/s00018-023-04714-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/12/2023] [Accepted: 01/31/2023] [Indexed: 02/12/2023]
Abstract
Late-onset Fuchs endothelial corneal dystrophy (FECD) is a disease affecting the corneal endothelium (CE), associated with a cytosine-thymine-guanine repeat expansion at the CTG18.1 locus in the transcription factor 4 (TCF4) gene. It is unknown whether CTG18.1 expansions affect global methylation including TCF4 gene in CE or whether global CE methylation changes at advanced age. Using genome-wide DNA methylation array, we investigated methylation in CE from FECD patients with CTG18.1 expansions and studied the methylation in healthy CE at different ages. The most revealing DNA methylation findings were analyzed by gene expression and protein analysis. 3488 CpGs had significantly altered methylation pattern in FECD though no substantial changes were found in TCF4. The most hypermethylated site was in a predicted promoter of aquaporin 1 (AQP1) gene, and the most hypomethylated site was in a predicted promoter of coagulation factor V (F5 for gene, FV for protein). In FECD, AQP1 mRNA expression was variable, while F5 gene expression showed a ~ 23-fold increase. FV protein was present in both healthy and affected CE. Further gene expression analysis of coagulation factors interacting with FV revealed a ~ 34-fold increase of thrombomodulin (THBD). THBD protein was detected only in CE from FECD patients. Additionally, we observed an age-dependent hypomethylation in elderly healthy CE.Thus, tissue-specific genome-wide and gene-specific methylation changes associated with altered gene expression were discovered in FECD. TCF4 pathological methylation in FECD because of CTG18.1 expansion was ruled out.
Collapse
|
6
|
Ren J, Cai J. circ_0014736 induces GPR4 to regulate the biological behaviors of human placental trophoblast cells through miR-942-5p in preeclampsia. Open Med (Wars) 2023; 18:20230645. [PMID: 36874362 PMCID: PMC9979007 DOI: 10.1515/med-2023-0645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/16/2022] [Accepted: 01/02/2023] [Indexed: 03/05/2023] Open
Abstract
Previous studies have indicated that the development of preeclampsia (PE) involves the regulation of circular RNA (circRNA). However, the role of hsa_circ_0014736 (circ_0014736) in PE remains unknown. Thus, the study proposes to reveal the function of circ_0014736 in the pathogenesis of PE and the underlying mechanism. The results showed that circ_0014736 and GPR4 expression were significantly upregulated, while miR-942-5p expression was downregulated in PE placenta tissues when compared with normal placenta tissues. circ_0014736 knockdown promoted the proliferation, migration, and invasion of placenta trophoblast cells (HTR-8/SVneo) and inhibited apoptosis; however, circ_0014736 overexpression had the opposite effects. circ_0014736 functioned as a sponge for miR-942-5p and regulated HTR-8/SVneo cell processes by interacting with miR-942-5p. Additionally, GPR4, a target gene of miR-942-5p, was involved in miR-942-5p-mediated actions in HTR-8/SVneo cells. Moreover, circ_0014736 stimulated GPR4 production through miR-942-5p. Collectively, circ_0014736 inhibited HTR-8/SVneo cell proliferation, migration, and invasion and induced cell apoptosis through the miR-942-5p/GPR4 axis, providing a possible target for the treatment of PE.
Collapse
Affiliation(s)
- Jinlian Ren
- Department of Obstetrics, Zhuji Affiliated Hospital of Wenzhou Medical University, Shaoxing, Zhejiang, China
| | - Jing Cai
- Department of Pathology, Shanghai Jiading District Anting Hospital, No. 1060 Hejing Road, Anting Town, Jiading District, Shanghai, China
| |
Collapse
|
7
|
Circ_0014736 induces GPR4 to regulate the biological behaviors of a human placental trophoblast cell line through miR-942-5p in preeclampsia. J Reprod Immunol 2023. [DOI: 10.1016/j.jri.2023.103813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Couto RR, Kubaski F, Siebert M, Félix TM, Brusius-Facchin AC, Leistner-Segal S. Increased Serum Levels of miR-125b and miR-132 in Fragile X Syndrome: A Preliminary Study. Neurol Genet 2022; 8:e200024. [PMID: 36313066 PMCID: PMC9608387 DOI: 10.1212/nxg.0000000000200024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/11/2022] [Indexed: 11/07/2022]
Abstract
Background and Objectives Fragile X syndrome (FXS) is a neurodevelopmental disorder, identified as the most common cause of hereditary intellectual disability and monogenic cause of autism spectrum disorders (ASDs), caused by the loss of fragile X mental retardation protein (FMRP). FMRP is an RNA-binding protein, a regulator of translation that plays an important role in neurodevelopment, and its loss causes cognitive and behavioral deficits. MicroRNAs (miRNAs) are small molecules that regulate gene expression in diverse biological processes. Previous studies found that the interaction of FMRP with miR-125b and miR-132 regulates the maturation and synaptic plasticity in animal models and miRNA dysregulation plays a role in the pathophysiology of FXS. The present study aimed to analyze the expression of miR-125b-5p and miR-132-3p in the serum of patients with FXS. Methods The expressions of circulating miRNAs were studied in the serum of 10 patients with FXS and 20 controls using the real-time quantitative retrotranscribed method analyzed by relative quantification. Receiver operating characteristic (ROC) curves and the area under the ROC curve (AUC) were generated to assess the diagnostic values of the miRNAs. Results We found that both miR-125b and miR-132 were increased in the serum of patients with FXS compared with controls and likely involved with FMRP loss. The AUC (95% confidence interval) of miR-125b and miR-132 was 0.94 (0.86–1.0) and 0.89 (0.77–1.0), respectively. Databases allowed for the identification of possible target genes for miR-125b and miR-132, whose products play an important role in the homeostasis of the nervous system. Discussion Our results indicate that serum miR-125b and miR-132 may serve as potential biomarkers for FXS. The increased expression of circulating miR-125b and miR-132 seems to be associated with the genotype of FXS. Predicted gene targets of the differentially regulated miRNAs are involved in cognitive performance and ASD phenotype. Classification of Evidence This study provides Class III evidence that miR-125b and miR-132 distinguish men with FXS from normal controls.
Collapse
Affiliation(s)
- Rowena Rubim Couto
- Medical Genetics Service (R.R.C., F.K., M.S., T.M.F., A.C.B.-F., S.L.-S.), Hospital de Clínicas de Porto Alegre-HCPA; Postgraduate Program in Medicine: Child and Adolescent Health (R.R.C., T.M.F., S.L.-S.), UFRGS; and Postgraduate Program in Genetics and Molecular Biology (F.K.), PPGMB, UFRGS, Porto Alegre, RS, Brazil
| | - Francyne Kubaski
- Medical Genetics Service (R.R.C., F.K., M.S., T.M.F., A.C.B.-F., S.L.-S.), Hospital de Clínicas de Porto Alegre-HCPA; Postgraduate Program in Medicine: Child and Adolescent Health (R.R.C., T.M.F., S.L.-S.), UFRGS; and Postgraduate Program in Genetics and Molecular Biology (F.K.), PPGMB, UFRGS, Porto Alegre, RS, Brazil
| | - Marina Siebert
- Medical Genetics Service (R.R.C., F.K., M.S., T.M.F., A.C.B.-F., S.L.-S.), Hospital de Clínicas de Porto Alegre-HCPA; Postgraduate Program in Medicine: Child and Adolescent Health (R.R.C., T.M.F., S.L.-S.), UFRGS; and Postgraduate Program in Genetics and Molecular Biology (F.K.), PPGMB, UFRGS, Porto Alegre, RS, Brazil
| | - Têmis Maria Félix
- Medical Genetics Service (R.R.C., F.K., M.S., T.M.F., A.C.B.-F., S.L.-S.), Hospital de Clínicas de Porto Alegre-HCPA; Postgraduate Program in Medicine: Child and Adolescent Health (R.R.C., T.M.F., S.L.-S.), UFRGS; and Postgraduate Program in Genetics and Molecular Biology (F.K.), PPGMB, UFRGS, Porto Alegre, RS, Brazil
| | - Ana Carolina Brusius-Facchin
- Medical Genetics Service (R.R.C., F.K., M.S., T.M.F., A.C.B.-F., S.L.-S.), Hospital de Clínicas de Porto Alegre-HCPA; Postgraduate Program in Medicine: Child and Adolescent Health (R.R.C., T.M.F., S.L.-S.), UFRGS; and Postgraduate Program in Genetics and Molecular Biology (F.K.), PPGMB, UFRGS, Porto Alegre, RS, Brazil
| | - Sandra Leistner-Segal
- Medical Genetics Service (R.R.C., F.K., M.S., T.M.F., A.C.B.-F., S.L.-S.), Hospital de Clínicas de Porto Alegre-HCPA; Postgraduate Program in Medicine: Child and Adolescent Health (R.R.C., T.M.F., S.L.-S.), UFRGS; and Postgraduate Program in Genetics and Molecular Biology (F.K.), PPGMB, UFRGS, Porto Alegre, RS, Brazil
| |
Collapse
|
9
|
Kessi M, Duan H, Xiong J, Chen B, He F, Yang L, Ma Y, Bamgbade OA, Peng J, Yin F. Attention-deficit/hyperactive disorder updates. Front Mol Neurosci 2022; 15:925049. [PMID: 36211978 PMCID: PMC9532551 DOI: 10.3389/fnmol.2022.925049] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/26/2022] [Indexed: 11/15/2022] Open
Abstract
Background Attention-deficit/hyperactive disorder (ADHD) is a neurodevelopmental disorder that commonly occurs in children with a prevalence ranging from 3.4 to 7.2%. It profoundly affects academic achievement, well-being, and social interactions. As a result, this disorder is of high cost to both individuals and society. Despite the availability of knowledge regarding the mechanisms of ADHD, the pathogenesis is not clear, hence, the existence of many challenges especially in making correct early diagnosis and provision of accurate management. Objectives We aimed to review the pathogenic pathways of ADHD in children. The major focus was to provide an update on the reported etiologies in humans, animal models, modulators, therapies, mechanisms, epigenetic changes, and the interaction between genetic and environmental factors. Methods References for this review were identified through a systematic search in PubMed by using special keywords for all years until January 2022. Results Several genes have been reported to associate with ADHD: DRD1, DRD2, DRD4, DAT1, TPH2, HTR1A, HTR1B, SLC6A4, HTR2A, DBH, NET1, ADRA2A, ADRA2C, CHRNA4, CHRNA7, GAD1, GRM1, GRM5, GRM7, GRM8, TARBP1, ADGRL3, FGF1, MAOA, BDNF, SNAP25, STX1A, ATXN7, and SORCS2. Some of these genes have evidence both from human beings and animal models, while others have evidence in either humans or animal models only. Notably, most of these animal models are knockout and do not generate the genetic alteration of the patients. Besides, some of the gene polymorphisms reported differ according to the ethnic groups. The majority of the available animal models are related to the dopaminergic pathway. Epigenetic changes including SUMOylation, methylation, and acetylation have been reported in genes related to the dopaminergic pathway. Conclusion The dopaminergic pathway remains to be crucial in the pathogenesis of ADHD. It can be affected by environmental factors and other pathways. Nevertheless, it is still unclear how environmental factors relate to all neurotransmitter pathways; thus, more studies are needed. Although several genes have been related to ADHD, there are few animal model studies on the majority of the genes, and they do not generate the genetic alteration of the patients. More animal models and epigenetic studies are required.
Collapse
Affiliation(s)
- Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Haolin Duan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Juan Xiong
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Yanli Ma
- Department of Neurology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Olumuyiwa A. Bamgbade
- Department of Anesthesiology and Pharmacology, University of British Columbia, Vancouver, BC, Canada
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- *Correspondence: Fei Yin,
| |
Collapse
|
10
|
Yang C, Kang B, Cao Z, Zhang J, Zhao F, Wang D, Su P, Chen J. Early-Life Pb Exposure Might Exert Synapse-Toxic Effects Via Inhibiting Synapse-Associated Membrane Protein 2 (VAMP2) Mediated by Upregulation of miR-34b. J Alzheimers Dis 2022; 87:619-633. [DOI: 10.3233/jad-215638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Early-life Pb exposure can cause behavioral and cognitive problems and induce symptoms of hyperactivity, impulsivity, and inattention in children. Studies showed that blood lead levels were highly correlated with neuropsychiatric disorders, and effects of neurotoxicity might persist and affect the incidence of neurodegenerative diseases, for example Alzheimer’s disease (AD). Objective: To explore possible mechanisms of developmental Pb-induced neuropsychiatric dysfunctions. Methods: Children were divided into low blood lead level (BLL) group (0–50.00μg/L) and high BLL group (> 50.00μg/L) and blood samples were collected. miRNA array was used to testify miRNA expression landscape between two groups. Correlation analysis and real-time PCR were applied to find miRNAs that altered in Pb and neuropsychiatric diseases. Animal models and cell experiments were used to confirm the effect of miRNAs in response to Pb, and siRNA and luciferase experiments were conducted to examine their effect on neural functions. Results: miRNA array data and correlation analysis showed that miR-34b was the most relevant miRNA among Pb neurotoxicity and neuropsychiatric disorders, and synapse-associated membrane protein 2 (VAMP2) was the target gene regulating synapse function. In vivo and in vitro studies showed Pb exposure injured rats’ cognitive abilities and induced upregulation of miR-34b and downregulation of VAMP2, resulting in decreases of hippocampal synaptic vesicles. Blockage of miR-34b mitigated Pb’s effects on VAMP2 in vitro. Conclusion: Early-life Pb exposure might exert synapse-toxic effects via inhibiting VAMP2 mediated by upregulation of miR-34b and shed a light on the underlying relationship between Pb neurotoxicity and developmental neuropsychiatric disorders.
Collapse
Affiliation(s)
- Changhao Yang
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Beipei Kang
- Department of Clinical Laboratory, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Zipeng Cao
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Jianbin Zhang
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Fang Zhao
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Diya Wang
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Peng Su
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Jingyuan Chen
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|