1
|
Park J, Moon E, Lim HJ, Kim K, Suh H, Yoon M, Lee JH, Hong YR. Ultradian Rest-activity Rhythms Induced by Quinpirole in Mice Using Wavelet Analysis. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2024; 22:578-584. [PMID: 39420605 PMCID: PMC11494435 DOI: 10.9758/cpn.23.1148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/03/2024] [Accepted: 02/28/2024] [Indexed: 10/19/2024]
Abstract
Objective Ultradian rhythms are biological rhythms with periods of a few seconds to a few hours. Along with circadian rhythms, ultradian rhythms influence human physiology. However, such rhythms have not been studied as intensively as circadian rhythms. This study aimed to identify ultradian rest-activity rhythms induced by the dopamine D2/D3 agonist quinpirole in mice. Methods We used 10 mice from the Institute of Cancer Research. Quinpirole was administered at a dose of 0.5 mg/kg. We assessed free rest-activity using infrared detectors and conducted wavelet analysis to measure the period and its variation. We also used the paired t test to compare ultradian rhythm patterns. Results Quinpirole did not significantly change total 24-hour locomotor activity (p = 0.065). However, it significantly increased locomotor activity during the dark phase (p = 0.001) and decreased it during the light phase (p = 0.016). In the continuous wavelet transform analysis, the mean period was 5.618 hours before quinpirole injection and 4.523 hours after injection. The period showed a significant decrease (p = 0.040), while the variation remained relatively consistent before and after quinpirole injection. Conclusion This study demonstrated ultradian rest-activity rhythms induced by quinpirole using wavelet analysis. Quinpirole-induced ultradian rhythms exhibited rapid oscillations with shortened periods and increased activity during the dark phase. To better understand these changes in ultradian rhythms caused by quinpirole, it is essential to compare them with the effects of other psychopharmacological agents. Furthermore, investigating the pharmacological impact on ultradian rest-activity rhythms may have valuable applications in clinical studies.
Collapse
Affiliation(s)
- Jeonghyun Park
- Department of Psychiatry and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Eunsoo Moon
- Department of Psychiatry and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
- Department of Psychiatry, Pusan National University School of Medicine, Yangsan, Korea
- Department of Applied Mathematics, Pukyong National University, Busan, Korea
| | - Hyun Ju Lim
- Department of Psychiatry and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
- Department of Psychology, Gyeongsang National University, Jinju, Korea
| | - Kyungwon Kim
- Department of Psychiatry and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
- Department of Psychiatry, Pusan National University School of Medicine, Yangsan, Korea
| | - Hwagyu Suh
- Department of Psychiatry and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
- Department of Psychiatry, Pusan National University School of Medicine, Yangsan, Korea
| | - Min Yoon
- Department of Applied Mathematics, Pukyong National University, Busan, Korea
| | - Jung Hyun Lee
- Department of Pediatrics, College of Medicine, Kosin University, Busan, Korea
| | - Yoo Rha Hong
- Department of Pediatrics, College of Medicine, Kosin University, Busan, Korea
| |
Collapse
|
2
|
Zhao Q, Yokomizo S, Perle SJ, Lee YF, Zhou H, Miller MR, Li H, Gerashchenko D, Gomperts SN, Bacskai BJ, Kastanenka KV. Optogenetic targeting of cortical astrocytes selectively improves NREM sleep in an Alzheimer's disease mouse model. Sci Rep 2024; 14:23044. [PMID: 39362954 PMCID: PMC11450172 DOI: 10.1038/s41598-024-73082-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/13/2024] [Indexed: 10/05/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative condition marked by memory impairments and distinct histopathological features such as amyloid-beta (Aβ) accumulations. Alzheimer's patients experience sleep disturbances at early stages of the disease. APPswe/PS1dE9 (APP) mice exhibit sleep disruptions, including reductions in non-rapid eye movement (NREM) sleep, that contribute to their disease progression. In addition, astrocytic calcium transients associated with a sleep-dependent brain rhythm, slow oscillations prevalent during NREM sleep, are disrupted in APP mice. However, at present it is unclear whether restoration of circuit function by targeting astrocytic activity could improve sleep in APP mice. To that end, APP mice expressing channelrhodopsin-2 (ChR2) targeted to astrocytes underwent optogenetic stimulation at the slow oscillation frequency. Optogenetic stimulation of astrocytes significantly increased NREM sleep duration but not duration of rapid eye movement (REM) sleep. Optogenetic treatment increased delta power and reduced sleep fragmentation in APP mice. Thus, optogenetic activation of astrocytes increased sleep quantity and improved sleep quality in an AD mouse model. Astrocytic activity provides a novel therapeutic avenue to pursue for enhancing sleep and slowing AD progression.
Collapse
Affiliation(s)
- Qiuchen Zhao
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Shinya Yokomizo
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Stephen J Perle
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Yee Fun Lee
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Heng Zhou
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Morgan R Miller
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Hanyan Li
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Dmitry Gerashchenko
- Department of Psychiatry, Harvard Medical School and Veterans Affairs Boston Healthcare System, West Roxbury, MA, 02132, USA
| | - Stephen N Gomperts
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Brian J Bacskai
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Ksenia V Kastanenka
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
3
|
Detweiler P, Wu P, Li CJ, Yong SB. Comment on "Estrogen deficiency induces bone loss through the gut microbiota". Pharmacol Res 2024; 202:107132. [PMID: 38442798 DOI: 10.1016/j.phrs.2024.107132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Affiliation(s)
- Priscilla Detweiler
- College of Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Patrick Wu
- College of Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Chia-Jung Li
- Department of Obstetrics and Gynaecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
| | - Su-Boon Yong
- Department of Allergy and Immunology, China Medical University Children's Hospital, Taichung, Taiwan; Department of Medicine, College of Medicine, China Medical University, Taichung, Taiwan; Center for Allergy, Immunology, and Microbiome (A.I.M.), China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
4
|
Park J, Moon E, Lim HJ, Kim K, Hong YR, Lee JH. Changes of Locomotor Activity by Dopamine D2, D3 Agonist Quinpirole in Mice Using Home-cage Monitoring System. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2023; 21:686-692. [PMID: 37859441 PMCID: PMC10591172 DOI: 10.9758/cpn.22.1016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/26/2022] [Accepted: 11/18/2022] [Indexed: 10/21/2023]
Abstract
Objective : As dopamine is closely linked to locomotor activities, animal studies on locomotor activities using dopaminergic agents were widely done. However, most of animal studies were performed for a short period that there is a lack of longitudinal study on the effects of dopaminergic agents on locomotor activities. This study aimed to examine the longterm effect of a dopamine D2, D3 agonist quinpirole on locomotor activities in mice using a home-cage monitoring system. Methods : The locomotor activities of Institute Cancer Research mice were measured by infrared motion detectors in home-cages under the 12-hour dark and 12-hour light condition for three days after the quinpirole injection. Quinpirole was injected at a concentration of 0.5 mg/kg intraperitoneally in the beginning of the dark phase. The locomotor activities before and after the quinpirole administration were compared by the Wilcoxon signed-rank test and one-way repeated measures ANOVA. Results : After the quinpirole administration, the 24-hour total locomotor activity did not change (p = 0.169), but activities were significantly increased in the 12-hour dark phase sum (p = 0.013) and decreased in the 12-hour light phase sum (p = 0.009). Significant increases in the activities were observed in the dark-light difference (p = 0.005) and dark-light ratio (p = 0.005) as well. Conclusion : This study suggests that quinpirole injection entrains the circadian rest-activity rhythm of locomotor activities. Therefore, quinpirole can be a drug that mediates locomotor activity as a dopamine agonist as well as a modulator of the circadian rhythms.
Collapse
Affiliation(s)
- Jeonghyun Park
- Department of Psychiatry and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Eunsoo Moon
- Department of Psychiatry and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
- Department of Psychiatry, Pusan National University School of Medicine, Yangsan, Korea
| | - Hyun Ju Lim
- Department of Psychiatry and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
- Department of Psychology, Gyeongsang National University, Jinju, Korea
| | - Kyungwon Kim
- Department of Psychiatry and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Yoo Rha Hong
- Department of Pediatrics, Kosin University College of Medicine, Busan, Korea
| | - Jung Hyun Lee
- Department of Pediatrics, Kosin University College of Medicine, Busan, Korea
| |
Collapse
|
5
|
Iacobelli P. Circadian dysregulation and Alzheimer’s disease: A comprehensive review. BRAIN SCIENCE ADVANCES 2022. [DOI: 10.26599/bsa.2022.9050021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Alzheimer’s disease (AD), the foremost variant of dementia, has been associated with a menagerie of risk factors, many of which are considered to be modifiable. Among these modifiable risk factors is circadian rhythm, the chronobiological system that regulates sleep‐wake cycles, food consumption timing, hydration timing, and immune responses amongst many other necessary physiological processes. Circadian rhythm at the level of the suprachiasmatic nucleus (SCN), is tightly regulated in the human body by a host of biomolecular substances, principally the hormones melatonin, cortisol, and serotonin. In addition, photic information projected along afferent pathways to the SCN and peripheral oscillators regulates the synthesis of these hormones and mediates the manner in which they act on the SCN and its substructures. Dysregulation of this cycle, whether induced by environmental changes involving irregular exposure to light, or through endogenous pathology, will have a negative impact on immune system optimization and will heighten the deposition of Aβ and the hyperphosphorylation of the tau protein. Given these correlations, it appears that there is a physiologic association between circadian rhythm dysregulation and AD. This review will explore the physiology of circadian dysregulation in the AD brain, and will propose a basic model for its role in AD‐typical pathology, derived from the literature compiled and referenced throughout.
Collapse
Affiliation(s)
- Peter Iacobelli
- Department of Arts and Sciences, University of South Carolina, Columbia, USA
| |
Collapse
|
6
|
Oh CE, Lim HJ, Park J, Moon E, Park JK. Relationship of Circadian Rhythm in Behavioral Characteristics and Lipid Peroxidation of Brain Tissues in Mice. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2022; 20:649-661. [PMID: 36263640 PMCID: PMC9606440 DOI: 10.9758/cpn.2022.20.4.649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/07/2021] [Accepted: 08/11/2021] [Indexed: 01/25/2023]
Abstract
OBJECTIVE This study aimed to explore the relationship among several indices of circadian rhythms and lipid peroxidation of brain tissue in mice. METHODS After entrainment of 4-week-old mice, one group was disrupted their circadian rhythms for three days and the other group for seven days (n = 10, respectively). After a recovery period, the Y-maze test, the elevated plus maze test, the tail suspension test, and the forced swimming test were conducted. To assess lipid peroxidation in brain tissue, thiobarbituric acid reactive substances were measured in the cortex, hippocampus, and cerebellum. RESULTS When circadian rhythms were disrupted and adapted back to their original rhythm, the recovery time of the 7-day disruption group (median 3.35 days) was significiantly faster than one of the 3-day disruption group (median 4.87 days). In the group with a 7-day disruption, mice that had recovered their rhythms early had higher malondialdehyde levels in their hippocampus compared to those with delayed recovery. The entrainment of circadian rhythms was negatively correlated with the malondialdehyde level of brain tissue. The behavioral test results showed no differences depending on the disruption durations or recovery patterns of circadian rhythms. CONCLUSION These results suggest that disruption types, recovery patterns, and the entrainment of circadian rhythms are likely to affect oxidative stress in adolescents or young adult mice. Future study is needed to confirm and specify these results on the effects of circadian rhythms on oxidative stress and age-dependent effects.
Collapse
Affiliation(s)
- Chi Eun Oh
- Department of Pediatrics, Kosin University College of Medicine, Busan, Korea,Address for correspondence: Ji Kyoung Park Department of Pediatrics, Busan Paik Hospital, Inje University College of Medicine, 75 Bokji-ro, Busanjin-gu, Busan 47392, Korea, E-mail: , ORCID: https://orcid.org/0000-0002-8241-2302, Eunsoo Moon, E-mail: , ORCID ID: https://orcid.org/0000-0002-8863-3413, This manuscript is based on Chi Eun Oh’s doctoral thesis
| | - Hyun Ju Lim
- Department of Psychiatry and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Jeounghyun Park
- Department of Psychiatry and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Eunsoo Moon
- Department of Psychiatry and Biomedical Research Institute, Pusan National University Hospital, Busan, Korea,Department of Psychiatry, Pusan National University School of Medicine, Yangsan, Korea,Address for correspondence: Ji Kyoung Park Department of Pediatrics, Busan Paik Hospital, Inje University College of Medicine, 75 Bokji-ro, Busanjin-gu, Busan 47392, Korea, E-mail: , ORCID: https://orcid.org/0000-0002-8241-2302, Eunsoo Moon, E-mail: , ORCID ID: https://orcid.org/0000-0002-8863-3413, This manuscript is based on Chi Eun Oh’s doctoral thesis
| | - Ji Kyoung Park
- Department of Pediatrics, Busan Paik Hospital, Inje University College of Medicine, Busan, Korea,Address for correspondence: Ji Kyoung Park Department of Pediatrics, Busan Paik Hospital, Inje University College of Medicine, 75 Bokji-ro, Busanjin-gu, Busan 47392, Korea, E-mail: , ORCID: https://orcid.org/0000-0002-8241-2302, Eunsoo Moon, E-mail: , ORCID ID: https://orcid.org/0000-0002-8863-3413, This manuscript is based on Chi Eun Oh’s doctoral thesis
| |
Collapse
|
7
|
Lee JH, Moon E, Park J, Hong YR, Yoon M. Analysis of ultradian rest-activity rhythms using locomotor activity in mice. KOSIN MEDICAL JOURNAL 2022. [DOI: 10.7180/kmj.22.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Background: Locomotor activity in mice may have an ultradian rest-activity rhythm. However, to date, no study has shown how locomotor activity can be explained statistically using fitted cosine curves. Therefore, this study explored whether the ultradian rhythm of locomotor activity in mice could be analyzed using cosine fitting analysis.Methods: The locomotor activity of 20 male mice under a 12/12-hour dark/light cycle for 2 days was fitted to a cosine function to obtain the best fit. The mean absolute error (MAE) values were used to determine the explanatory power of the calculated cosine model for locomotor activity. The cosine fitting analysis was performed using R statistical software (version 4.1.1).Results: The mean MAE was 0.2944, whereas the mean MAE for integrating the individual analyses in the two experimental groups was 0.3284. The periods of the estimated ultradian rest-activity rhythm ranged from 1.602 to 4.168 hours. Conclusions: These results suggest that locomotor activity data reflect an ultradian rhythm better than a circadian rhythm. Locomotor activity can be statistically fitted to a cosine curve under well-controlled conditions. In the future, it will be necessary to explore whether this cosine-fitting analysis can be used to analyze ultradian rhythms under different experimental conditions.
Collapse
|
8
|
Lee JH, Moon E, Park J, Oh CE, Hong YR, Yoon M. Optimization of Analysis of Circadian Rest-Activity Rhythm Using Cosinor Analysis in Mice. Psychiatry Investig 2022; 19:380-385. [PMID: 35620823 PMCID: PMC9136527 DOI: 10.30773/pi.2021.0395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/05/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE Data processing in analysis of circadian rhythm was performed in various ways. However, there was a lack of evidence for the optimal analysis of circadian rest-activity rhythm. Therefore, we aimed to perform mathematical simulations of data processing to investigate proper evidence for the optimal analysis of circadian rest-activity rhythm. METHODS Locomotor activities of 20 ICR male mice were measured by infrared motion detectors. The data of locomotor activities was processed using data summation, data average, and data moving average methods for cosinor analysis. Circadian indices were estimated according to time block, respectively. Also, statistical F and p-values were calculated by zero-amplitude test. RESULTS The data moving average result showed well-fitted cosine curves independent of data processing time. Meanwhile, the amplitude, MESOR, and acrophase were properly estimated within 800 seconds in data summation and data average methods. CONCLUSION These findings suggest that data moving average would be an optimal method for data processing in a cosinor analysis and data average within 800-second data processing time might be adaptable. The results of this study can be helpful to analyze circadian restactivity rhythms and integrate the results of the studies using different data processing methods.
Collapse
Affiliation(s)
- Jung Hyun Lee
- Department of Pediatrics, Kosin University College of Medicine, Busan, Republic of Korea
| | - Eunsoo Moon
- Department of Psychiatry and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea.,Department of Psychiatry, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Jeonghyun Park
- Department of Psychiatry and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Chi Eun Oh
- Department of Pediatrics, Kosin University College of Medicine, Busan, Republic of Korea
| | - Yoo Rha Hong
- Department of Pediatrics, Kosin University College of Medicine, Busan, Republic of Korea
| | - Min Yoon
- Department of Applied Mathematics, Pukyung National University, Busan, Republic of Korea
| |
Collapse
|