26
|
Carter M, Ortega-Franco A, Rafee S, Russell P, Halkyard E, Wallace A, Lindsay C, Blackhall F. Clinical utility of targeted next generation sequencing in lung cancer. Lung Cancer 2020. [DOI: 10.1016/s0169-5002(20)30173-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Zhao X, Liu Z, Agu E, Wagh A, Jain S, Lindsay C, Tulu B, Strong D, Kan J. Fine-grained diabetic wound depth and granulation tissue amount assessment using bilinear convolutional neural network. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2019; 7:179151-179162. [PMID: 33777590 PMCID: PMC7996404 DOI: 10.1109/access.2019.2959027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Diabetes mellitus is a serious chronic disease that affects millions of people worldwide. In patients with diabetes, ulcers occur frequently and heal slowly. Grading and staging of diabetic ulcers is the first step of effective treatment and wound depth and granulation tissue amount are two important indicators of wound healing progress. However, wound depths and granulation tissue amount of different severities can visually appear quite similar, making accurate machine learning classification challenging. In this paper, we innovatively adopted the fine-grained classification idea for diabetic wound grading by using a Bilinear CNN (Bi-CNN) architecture to deal with highly similar images of five grades. Wound area extraction, sharpening, resizing and augmentation were used to pre-process images before being input to the Bi-CNN. Innovative modifications of the generic Bi-CNN network architecture are explored to improve its performance. Our research generated a valuable wound dataset. In collaboration with wound experts from University of Massachusetts Medical School, we collected a diabetic wound dataset of 1639 images and annotated them with wound depth and granulation tissue grades as labels for classification. Deep learning experiments were conducted using holdout validation on this diabetic wound dataset. Comparisons with widely used CNN classification architectures demonstrated that our Bi-CNN fine-grained classification approach outperformed prior work for the task of grading diabetic wounds.
Collapse
|
28
|
Smith RL, Dasari P, Lindsay C, King M, Wells K. Dense motion propagation from sparse samples. Phys Med Biol 2019; 64:205023. [PMID: 31487702 DOI: 10.1088/1361-6560/ab41a0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
There are many applications for which sparse, or partial sampling of dynamic image data can be used for articulating or estimating motion within the medical imaging area. In this new work, we propose a generalized framework for dense motion propagation from sparse samples which represents an example of transfer learning and manifold alignment, allowing the transfer of knowledge across imaging sources of different domains which exhibit different features. Many such examples exist in medical imaging, from mapping 2D ultrasound or fluoroscopy to 3D or 4D data or monitoring dynamic dose delivery from partial imaging data in radiotherapy. To illustrate this approach we animate, or articulate, a high resolution static MR image with 4D free breathing respiratory motion derived from low resolution sparse planar samples of motion. In this work we demonstrate that sparse sampling of dynamic MRI may be used as a viable approach to successfully build models of free- breathing respiratory motion by constrained articulation. Such models demonstrate high contrast, and high temporal and spatial resolution that have so far been hitherto unavailable with conventional imaging methods. The articulation is based on using a propagation model, in the eigen domain, to estimate complete 4D motion vector fields from sparsely sampled free-breathing dynamic MRI data. We demonstrate that this approach can provide equivalent motion vector fields compared to fully sampled 4D dynamic data, whilst preserving the corresponding high resolution/high contrast inherent in the original static volume. Validation is performed on three 4D MRI datasets using eight extracted slices from a fast 4D acquisition (0.7 s per volume). The estimated deformation fields from sparse sampling are compared to the fully sampled equivalents, resulting in an rms error of the order of 2 mm across the entire image volume. We also present exemplar 4D high contrast, high resolution articulated volunteer datasets using this methodology. This approach facilitates greater freedom in the acquisition of free breathing respiratory motion sequences which may be used to inform motion modelling methods in a range of imaging modalities and demonstrates that sparse sampling of free breathing data may be used within a manifold alignment and transfer learning paradigm to estimate fully sampled motion. The method may also be applied to other examples of sparse sampling to produce dense motion propagation.
Collapse
|
29
|
Ackermann C, Fornacon-Wood I, Tay R, Manoharan P, Price G, Lindsay C, Faivre-Finn C, Blackhall F, Cobben D. P1.04-44 Radiomics for Predicting Response to First-Line Anti-PD1 Therapy in Advanced NSCLC. J Thorac Oncol 2019. [DOI: 10.1016/j.jtho.2019.08.947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Lindsay C, Rafee S, Nicola P, Wallace A, Burghel G, Schlecht H, Baker K, Baker E, Priest L, Rogan J, Moghadam S, Carter M, Newman W, Blackhall F. MA25.08 Characterisation of Tumor Aetiology Using Mutational Signatures from the Non-Small Cell Lung Cancer Genome. J Thorac Oncol 2019. [DOI: 10.1016/j.jtho.2019.08.714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Broadbent R, Lindsay C, Blackhall F. An audit into the use of bisphosphonates for patients with non-small cell lung cancer and bone metastases at a tertiary cancer centre. Lung Cancer 2019. [DOI: 10.1016/s0169-5002(19)30251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Lindsay C, Bazalova‐Carter M, Wang A, Shedlock D, Wu M, Newson M, Xing L, Ansbacher W, Fahrig R, Star‐Lack J. Investigation of combined
kV
/
MV CBCT
imaging with a high‐
DQE MV
detector. Med Phys 2018; 46:563-575. [DOI: 10.1002/mp.13291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 01/23/2023] Open
|
33
|
Makepeace DK, Locatelli P, Lindsay C, Adams JM, Keddie JL. Colloidal polymer composites: Are nano-fillers always better for improving mechanical properties? J Colloid Interface Sci 2018; 523:45-55. [PMID: 29605740 DOI: 10.1016/j.jcis.2018.03.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 10/17/2022]
Abstract
HYPOTHESIS Colloidal polymer composites, in which polymer particles are blended with a filler, are widely used in applications including pharmaceuticals, crop protection, inks, and protective coatings. It is generally found that the presence of hard particulate fillers will increase the elastic modulus of a polymer colloid composite. However, the influence of the size of the filler particle on the large-strain deformation and fracture and on the viscoelastic characteristics, including creep, is not well explored. We hypothesize that the size ratio of the filler to the colloidal polymer will play a critical role in determining the properties of the composite. EXPERIMENTS Colloidal composites were prepared by blending soft polymer colloids (as a binder) with calcium carbonate fillers having four different sizes, spanning from 70 nm to 4.5 μm. There is no bonding between the filler and matrix in the composites. The large-strain deformation, linear viscoelasticity, and creep were determined for each filler size for increasing the filler volume fractions (ϕCC). Weibull statistics were used to analyze the distributions of strains at failure. FINDINGS We find that the inclusion of nano-fillers leads to brittle fracture at a lower ϕCC than when μm-size fillers are used. The data interpretation is supported by Weibull analysis. However, for a given ϕCC, the storage modulus is higher in the rubbery regime, and the creep resistance is higher when nanoparticles are used. Using scanning electron microscopy to support our arguments, we show that the properties of colloidal composites are correlated with their microstructure, which can be altered through control of the filler:polymer particle size ratio. Hard nanoparticles pack efficiently around larger particles to provide reinforcement (manifested as a higher storage modulus and greater creep resistance), but they also introduce weak points that lead to brittleness.
Collapse
|
34
|
Hoehr C, Lindsay C, Beaudry J, Penner C, Strgar V, Lee R, Duzenli C. Characterization of the exradin W1 plastic scintillation detector for small field applications in proton therapy. Phys Med Biol 2018; 63:095016. [PMID: 29634488 DOI: 10.1088/1361-6560/aabd2d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Accurate dosimetry in small field proton therapy is challenging, particularly for applications such as ocular therapy, and suitable detectors for this purpose are sought. The Exradin W1 plastic scintillating fibre detector is known to out-perform most other detectors for determining relative dose factors for small megavoltage photon beams used in radiotherapy but its potential in small proton beams has been relatively unexplored in the literature. The 1 mm diameter cylindrical geometry and near water equivalence of the W1 makes it an attractive alternative to other detectors. This study examines the dosimetric performance of the W1 in a 74 MeV proton therapy beam with particular focus on detector response characteristics relevant to relative dose measurement in small fields suitable for ocular therapy. Quenching of the scintillation signal is characterized and demonstrated not to impede relative dose measurements at a fixed depth. The background cable-only (Čerenkov and radio-fluorescence) signal is 4 orders of magnitude less than the scintillation signal, greatly simplifying relative dose measurements. Comparison with other detectors and Monte Carlo simulations indicate that the W1 is useful for measuring relative dose factors for field sizes down to 5 mm diameter and shallow spread out Bragg peaks down to 6 mm in depth.
Collapse
|
35
|
Makepeace DK, Fortini A, Markov A, Locatelli P, Lindsay C, Moorhouse S, Lind R, Sear RP, Keddie JL. Stratification in binary colloidal polymer films: experiment and simulations. SOFT MATTER 2017; 13:6969-6980. [PMID: 28920986 DOI: 10.1039/c7sm01267e] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
UNLABELLED When films are deposited from mixtures of colloidal particles of two different sizes, a diverse range of functional structures can result. One structure of particular interest is a stratified film in which the top surface layer has a composition different than in the interior. Here, we explore the conditions under which a stratified layer of small particles develops spontaneously in a colloidal film that is cast from a binary mixture of small and large polymer particles that are suspended in water. A recent model, which considers the cross-interaction between the large and small particles (Zhou et al., Phys. Rev. Lett., 2017, 118, 108002), predicts that stratification will develop from dilute binary mixtures when the particle size ratio (α), initial volume fraction of small particles (ϕS), and Péclet number are high. In experiments and Langevin dynamics simulations, we systematically vary α and ϕS in both dilute and concentrated suspensions. We find that stratified films develop when ϕS is increased, which is in agreement with the model. In dilute suspensions, there is reasonable agreement between the experiments and the Zhou et al. MODEL In concentrated suspensions, stratification occurs in experiments only for the higher size ratio α = 7. Simulations using a high Péclet number, additionally find stratification with α = 2, when ϕS is high enough. Our results provide a quantitative understanding of the conditions under which stratified colloidal films assemble. Our research has relevance for the design of coatings with targeted optical and mechanical properties at their surface.
Collapse
|
36
|
Mukherjee JM, Lindsay C, Mukherjee A, Olivier P, Shao L, King MA, Licho R. Improved frame-based estimation of head motion in PET brain imaging. Med Phys 2017; 43:2443. [PMID: 27147355 DOI: 10.1118/1.4946814] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Head motion during PET brain imaging can cause significant degradation of image quality. Several authors have proposed ways to compensate for PET brain motion to restore image quality and improve quantitation. Head restraints can reduce movement but are unreliable; thus the need for alternative strategies such as data-driven motion estimation or external motion tracking. Herein, the authors present a data-driven motion estimation method using a preprocessing technique that allows the usage of very short duration frames, thus reducing the intraframe motion problem commonly observed in the multiple frame acquisition method. METHODS The list mode data for PET acquisition is uniformly divided into 5-s frames and images are reconstructed without attenuation correction. Interframe motion is estimated using a 3D multiresolution registration algorithm and subsequently compensated for. For this study, the authors used 8 PET brain studies that used F-18 FDG as the tracer and contained minor or no initial motion. After reconstruction and prior to motion estimation, known motion was introduced to each frame to simulate head motion during a PET acquisition. To investigate the trade-off in motion estimation and compensation with respect to frames of different length, the authors summed 5-s frames accordingly to produce 10 and 60 s frames. Summed images generated from the motion-compensated reconstructed frames were then compared to the original PET image reconstruction without motion compensation. RESULTS The authors found that our method is able to compensate for both gradual and step-like motions using frame times as short as 5 s with a spatial accuracy of 0.2 mm on average. Complex volunteer motion involving all six degrees of freedom was estimated with lower accuracy (0.3 mm on average) than the other types investigated. Preprocessing of 5-s images was necessary for successful image registration. Since their method utilizes nonattenuation corrected frames, it is not susceptible to motion introduced between CT and PET acquisitions. CONCLUSIONS The authors have shown that they can estimate motion for frames with time intervals as short as 5 s using nonattenuation corrected reconstructed FDG PET brain images. Intraframe motion in 60-s frames causes degradation of accuracy to about 2 mm based on the motion type.
Collapse
|
37
|
Dean E, Steele N, Arkenau HT, Blackhall F, Haris N, Lindsay C, Rafii S, Califano R, Plummer R, Voskoboynik M, Summers Y, Ghiorghiu D, Dymond A, So K, Greystoke A. SELECT-3: A phase I study of selumetinib in combination with platinum doublet chemotherapy for advanced NSCLC in the first-line setting. Ann Oncol 2016. [DOI: 10.1093/annonc/mdw383.69] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
38
|
Bluthgen M, Dansin E, Ou D, Lena H, Mazieres J, Pichon E, Thillays F, Massard G, Quantin X, Oulkhouir Y, Hon TNT, Thiberville L, Clement-Duchene C, Lindsay C, Missy P, Molina T, Girard N, Besse B, Thomas P. Quality of resection and outcome in stage III thymic epithelial tumors (TET): A retrospective analysis of 150 cases from the national network RYTHMIC experience. Ann Oncol 2016. [DOI: 10.1093/annonc/mdw391.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
39
|
Tamburelli M, Bluthgen M, Lindsay C, Bianchi F, Castillo J, Castaño R, Bas C, Gomez-Abuin G. Effect of age on completion of intraperitoneal chemotherapy in ovarian cancer. Ann Oncol 2016. [DOI: 10.1093/annonc/mdw374.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
40
|
Lindsay C, Kumlin J, Martinez DM, Jirasek A, Hoehr C. Design and application of 3D-printed stepless beam modulators in proton therapy. Phys Med Biol 2016; 61:N276-90. [DOI: 10.1088/0031-9155/61/11/n276] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
41
|
Amin T, Lindsay C, Hoehr C, Barlow R. PET scanning of ocular melanoma after proton irradiation. Radiother Oncol 2016. [DOI: 10.1016/s0167-8140(16)30007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
42
|
Dasari PKR, Shazeeb MS, Könik A, Lindsay C, Mukherjee JM, Johnson KL, King MA. Adaptation of the modified Bouc-Wen model to compensate for hysteresis in respiratory motion for the list-mode binning of cardiac SPECT and PET acquisitions: testing using MRI. Med Phys 2015; 41:112508. [PMID: 25370667 DOI: 10.1118/1.4895845] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Binning list-mode acquisitions as a function of a surrogate signal related to respiration has been employed to reduce the impact of respiratory motion on image quality in cardiac emission tomography (SPECT and PET). Inherent in amplitude binning is the assumption that there is a monotonic relationship between the amplitude of the surrogate signal and respiratory motion of the heart. This assumption is not valid in the presence of hysteresis when heart motion exhibits a different relationship with the surrogate during inspiration and expiration. The purpose of this study was to investigate the novel approach of using the Bouc-Wen (BW) model to provide a signal accounting for hysteresis when binning list-mode data with the goal of thereby improving motion correction. The study is based on the authors' previous observations that hysteresis between chest and abdomen markers was indicative of hysteresis between abdomen markers and the internal motion of the heart. METHODS In 19 healthy volunteers, they determined the internal motion of the heart and diaphragm in the superior-inferior direction during free breathing using MRI navigators. A visual tracking system (vts) synchronized with MRI acquisition tracked the anterior-posterior motions of external markers placed on the chest and abdomen. These data were employed to develop and test the Bouc-Wen model by inputting the vts derived chest and abdomen motions into it and using the resulting output signals as surrogates for cardiac motion. The data of the volunteers were divided into training and testing sets. The training set was used to obtain initial values for the model parameters for all of the volunteers in the set, and for set members based on whether they were or were not classified as exhibiting hysteresis using a metric derived from the markers. These initial parameters were then employed with the testing set to estimate output signals. Pearson's linear correlation coefficient between the abdomen, chest, average of chest and abdomen markers, and Bouc-Wen derived signals versus the true internal motion of the heart from MRI was used to judge the signals match to the heart motion. RESULTS The results show that the Bouc-Wen model generated signals demonstrated strong correlation with the heart motion. This correlation was slightly larger on average than that of the external surrogate signals derived from the abdomen marker, and average of the abdomen and chest markers, but was not statistically significantly different from them. CONCLUSIONS The results suggest that the proposed model has the potential to be a unified framework for modeling hysteresis in respiratory motion in cardiac perfusion studies and beyond.
Collapse
|
43
|
Lindsay C, Kumlin J, Jirasek A, Lee R, Martinez DM, Schaffer P, Hoehr C. 3D printed plastics for beam modulation in proton therapy. Phys Med Biol 2015; 60:N231-40. [DOI: 10.1088/0031-9155/60/11/n231] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Lindsay C, Helliwell B, Harding P, Hicklin D, Ispoglou S, Sturman S, Pandyan A. A prospective observational study investigating the time course of arm recovery and the development of spasticity and contractures following stroke. Physiotherapy 2015. [DOI: 10.1016/j.physio.2015.03.1721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Mirabile I, Shaw E, Lindsay C, Walker I, Johnson P. 529 The Cancer Research UK Stratified Medicine Programme: From national screening to national trial. Eur J Cancer 2014. [DOI: 10.1016/s0959-8049(14)70655-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Dean E, Steele N, Arkenau H, Blackhall F, Haris N, Lindsay C, Saggese M, Califano R, Greystoke A, Voskoboynik M, Ghiorghiu D, Dymond A, Smith I, Plummer R. A Phase I Study of the Mek1/2 Inhibitor Selumetinib in Combination with First-Line Chemotherapy Regimens for Nsclc. Ann Oncol 2014. [DOI: 10.1093/annonc/mdu349.21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
47
|
Lindsay C, Thistlethwaite F, Gupta A, Mansoor W, Lewsley L, Hubner R, Hopkins C, Chan K, McDowell C, Campbell S, Douglas L, Bray C, Ranson M, Dive C, Middleton M, Landers D, Evans T. Fgfr Inhibitor and Chemotherapy in Gastric Cancer (Facing): Phase I Results from an Ecmc Combinations Alliance Phase I/II Trial of Azd4547 in Combination with Cisplatin and Capecitabine (Cx). Ann Oncol 2014. [DOI: 10.1093/annonc/mdu331.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
48
|
Lindsay C, Blackmore E, Hoehr C, Jirasek A, Schaffer P, Sossi V, Trinczek M. Sci-Fri PM: Topics - 07: Monte Carlo Simulation of Primary Dose and PET Isotope Production for the TRIUMF Proton Therapy Facility. Med Phys 2014. [DOI: 10.1118/1.4894954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
49
|
Könik A, Connolly CM, Johnson KL, Dasari P, Segars PW, Pretorius PH, Lindsay C, Dey J, King MA. Digital anthropomorphic phantoms of non-rigid human respiratory and voluntary body motion for investigating motion correction in emission imaging. Phys Med Biol 2014; 59:3669-82. [PMID: 24925891 DOI: 10.1088/0031-9155/59/14/3669] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The development of methods for correcting patient motion in emission tomography has been receiving increased attention. Often the performance of these methods is evaluated through simulations using digital anthropomorphic phantoms, such as the commonly used extended cardiac torso (XCAT) phantom, which models both respiratory and cardiac motion based on human studies. However, non-rigid body motion, which is frequently seen in clinical studies, is not present in the standard XCAT phantom. In addition, respiratory motion in the standard phantom is limited to a single generic trend. In this work, to obtain a more realistic representation of motion, we developed a series of individual-specific XCAT phantoms, modeling non-rigid respiratory and non-rigid body motions derived from the magnetic resonance imaging (MRI) acquisitions of volunteers. Acquisitions were performed in the sagittal orientation using the Navigator methodology. Baseline (no motion) acquisitions at end-expiration were obtained at the beginning of each imaging session for each volunteer. For the body motion studies, MRI was again acquired only at end-expiration for five body motion poses (shoulder stretch, shoulder twist, lateral bend, side roll, and axial slide). For the respiratory motion studies, an MRI was acquired during free/regular breathing. The magnetic resonance slices were then retrospectively sorted into 14 amplitude-binned respiratory states, end-expiration, end-inspiration, six intermediary states during inspiration, and six during expiration using the recorded Navigator signal. XCAT phantoms were then generated based on these MRI data by interactive alignment of the organ contours of the XCAT with the MRI slices using a graphical user interface. Thus far we have created five body motion and five respiratory motion XCAT phantoms from the MRI acquisitions of six healthy volunteers (three males and three females). Non-rigid motion exhibited by the volunteers was reflected in both respiratory and body motion phantoms with a varying extent and character for each individual. In addition to these phantoms, we recorded the position of markers placed on the chest of the volunteers for the body motion studies, which could be used as external motion measurement. Using these phantoms and external motion data, investigators will be able to test their motion correction approaches for realistic motion obtained from different individuals. The non-uniform rational B-spline data and the parameter files for these phantoms are freely available for downloading and can be used with the XCAT license.
Collapse
|
50
|
Dasari P, Johnson K, Dey J, Lindsay C, Shazeeb MS, Mukherjee JM, Zheng S, King MA. MRI Investigation of the Linkage Between Respiratory Motion of the Heart and Markers on Patient's Abdomen and Chest: Implications for Respiratory Amplitude Binning List-Mode PET and SPECT Studies. IEEE TRANSACTIONS ON NUCLEAR SCIENCE 2014; 61:192-201. [PMID: 24817767 PMCID: PMC4013094 DOI: 10.1109/tns.2013.2294829] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Respiratory motion of the heart impacts the diagnostic accuracy of myocardial-perfusion emission-imaging studies. Amplitude binning has come to be the method of choice for binning list-mode based acquisitions for correction of respiratory motion in PET and SPECT. In some subjects respiratory motion exhibits hysteretic behavior similar to damped non-linear cyclic systems. The detection and correction of hysteresis between the signals from surface movement of the patient's body used in binning and the motion of the heart within the chest remains an open area for investigation. This study reports our investigation in nine volunteers of the combined MRI tracking of the internal respiratory motion of the heart using Navigators with stereo-tracking of markers on the volunteer's chest and abdomen by a visual-tracking system (VTS). The respiratory motion signals from the internal organs and the external markers were evaluated for hysteretic behavior analyzing the temporal correspondence of the signals. In general, a strong, positive correlation between the external marker motion (AP direction) and the internal heart motion (SI direction) during respiration was observed. The average ± standard deviation in the Spearman's ranked correlation coefficient (ρ) over the nine volunteer studied was 0.92 ± 0.1 between the external abdomen marker and the internal heart, and 0.87 ± 0.2 between the external chest marker and the internal heart. However despite the good correlation on average for the nine volunteers, in three studies a poor correlation was observed due to hysteretic behavior between inspiration and expiration for either the chest marker and the internal motion of the heart, or the abdominal marker and the motion of the heart. In all cases we observed a good correlation of at least either the abdomen or the chest with the heart. Based on this result, we propose the use of marker motion from both the chest and abdomen regions when estimating the internal heart motion to detect and address hysteresis when binning list-mode emission data.
Collapse
|