1
|
Trettenbrein PC, Friederici AD. Functional and structural brain asymmetries in language processing. HANDBOOK OF CLINICAL NEUROLOGY 2025; 208:269-287. [PMID: 40074402 DOI: 10.1016/b978-0-443-15646-5.00020-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
The lateralization of language to the left hemisphere of the human brain constitutes one of the classic examples of asymmetry in biology. At the same time, it is also commonly understood that damage to the left hemisphere does not lead to a complete loss of all linguistic abilities. These seemingly contradictory findings indicate that neither our cognitive capacity for language nor its neural substrates are monolithic. This chapter reviews the functional and structural lateralization of the neural substrates of different aspects of language as revealed in the past decades by neuroimaging research. Most aspects of language processing indeed tend to be functionally lateralized to the left hemisphere in the adult human brain. Nevertheless, both hemispheres exhibit a certain equipotentiality with regard to some aspects of language processing, especially with regard to processing meaning and sound. In contrast, the so-called "core language network" in the left hemisphere constitutes a functional and structural asymmetry: This network (i) is crucial for a core aspect of language processing, namely syntax, which refers to the generation of hierarchically structured representations of utterances linking meaning and sound, (ii) matures in accordance with a genetically determined biologic matrix, and (iii) its emergence may have constituted a prerequisite for the evolution of the human language capacity.
Collapse
Affiliation(s)
- Patrick C Trettenbrein
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; International Max Planck Research School on Neuroscience of Communication: Structure, Function, and Plasticity (IMPRS NeuroCom), Leipzig, Germany; Experimental Sign Language Laboratory (SignLab), Department of German Philology, University of Göttingen, Göttingen, Germany
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
2
|
Hopkins WD, Meguerditchian A. Handedness and brain asymmetries in nonhuman primates. HANDBOOK OF CLINICAL NEUROLOGY 2025; 208:197-210. [PMID: 40074397 DOI: 10.1016/b978-0-443-15646-5.00007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
A majority of humans are right-handed and exhibit left hemisphere specialization for the comprehension and production of language. To what extent population-level behavioral and brain asymmetries are unique to humans remains a topic of interest across a wide range of scientific disciplines. In this chapter, we present current findings on the expression of population-level behavioral and brain asymmetries in nonhuman primates. We further present data on the association between communication functions, and especially gestures and individual variation in neuroanatomic asymmetries in nonhuman primates, with an emphasis on data from chimpanzees and baboons. The collective data are interpreted within the context of different theories on the evolution of language lateralization.
Collapse
Affiliation(s)
- William D Hopkins
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX, United States.
| | - Adrien Meguerditchian
- Laboratoire de Psychologie Cognitive, CNRS, Aix-Marseille University, Institute of Language, Communication and the Brain, Marseille, France
| |
Collapse
|
3
|
Wan B, Saberi A, Paquola C, Schaare HL, Hettwer MD, Royer J, John A, Dorfschmidt L, Bayrak Ş, Bethlehem RAI, Eickhoff SB, Bernhardt BC, Valk SL. Microstructural asymmetry in the human cortex. Nat Commun 2024; 15:10124. [PMID: 39578424 PMCID: PMC11584796 DOI: 10.1038/s41467-024-54243-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/01/2024] [Indexed: 11/24/2024] Open
Abstract
The human cerebral cortex shows hemispheric asymmetry, yet the microstructural basis of this asymmetry remains incompletely understood. Here, we probe layer-specific microstructural asymmetry using one post-mortem male brain. Overall, anterior and posterior regions show leftward and rightward asymmetry respectively, but this pattern varies across cortical layers. A similar anterior-posterior pattern is observed using in vivo Human Connectome Project (N = 1101) T1w/T2w microstructural data, with average cortical asymmetry showing the strongest similarity with post-mortem-based asymmetry of layer III. Moreover, microstructural asymmetry is found to be heritable, varies as a function of age and sex, and corresponds to intrinsic functional asymmetry. We also observe a differential association of language and markers of mental health with microstructural asymmetry patterns at the individual level, illustrating a functional divergence between inferior-superior and anterior-posterior microstructural axes, possibly anchored in development. Last, we could show concordant evidence with alternative in vivo microstructural measures: magnetization transfer (N = 286) and quantitative T1 (N = 50). Together, our study highlights microstructural asymmetry in the human cortex and its functional and behavioral relevance.
Collapse
Grants
- International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity (IMPRS NeuroCom), Graduate Academy Leipzig, and Mitacs Globalink Research Award.
- German Ministry for Education and Research (BMBF) and the Max Planck Society
- National Science and Engineering Research Council of Canada (NSERC Discovery-1304413), Canadian Institutes of Health Research (FDN-154298, PJT-174995), SickKids Foundation (NI17-039), BrainCanada, FRQ-S, the Tier-2 Canada Research Chairs program, and Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL).
- Helmholtz International BigBrain Analytics and Learning Laboratory (HIBALL) and Otto Hahn Award at Max Planck Society.
Collapse
Affiliation(s)
- Bin Wan
- Otto Hahn Research Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity (IMPRS NeuroCom), Leipzig, Germany.
- Department of Cognitive Neurology, University Hospital Leipzig and Faculty of Medicine, University of Leipzig, Leipzig, Germany.
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Center Jülich, Jülich, Germany.
| | - Amin Saberi
- Otto Hahn Research Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Center Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorfpital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Casey Paquola
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Center Jülich, Jülich, Germany
| | - H Lina Schaare
- Otto Hahn Research Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Center Jülich, Jülich, Germany
| | - Meike D Hettwer
- Otto Hahn Research Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Center Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorfpital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Max Planck School of Cognition, Leipzig, Germany
| | - Jessica Royer
- McConnell Brain Imaging Centre, Montréal Neurological Institute and Hospital, McGill University, Montréal, QC, Canada
| | - Alexandra John
- Otto Hahn Research Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Center Jülich, Jülich, Germany
| | - Lena Dorfschmidt
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
| | - Şeyma Bayrak
- Otto Hahn Research Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Cognitive Neurology, University Hospital Leipzig and Faculty of Medicine, University of Leipzig, Leipzig, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Center Jülich, Jülich, Germany
| | | | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Center Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorfpital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montréal Neurological Institute and Hospital, McGill University, Montréal, QC, Canada
| | - Sofie L Valk
- Otto Hahn Research Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- Institute of Neuroscience and Medicine (INM-7: Brain and Behavior), Research Center Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorfpital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
4
|
Wróbel PP, Braaß H, Frey BM, Bönstrup M, Guder S, Frontzkowski LK, Feldheim JF, Cheng B, Rathi Y, Pasternak O, Thomalla G, Koerte IK, Shenton ME, Gerloff C, Quandt F, Higgen FL, Schulz R. Cortical microstructure and hemispheric specialization-A diffusion-imaging analysis in younger and older adults. Eur J Neurosci 2024; 60:5718-5730. [PMID: 39205547 DOI: 10.1111/ejn.16518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Characterizing cortical plasticity becomes increasingly important for identifying compensatory mechanisms and structural reserve in the ageing population. While cortical thickness (CT) largely contributed to systems neuroscience, it incompletely informs about the underlying neuroplastic pathophysiology. In turn, microstructural characteristics may correspond to atrophy mechanisms in a more sensitive way. Fractional anisotropy, a diffusion tensor imaging (DTI) measure, is inversely related to cortical histologic complexity. Axial diffusivity and radial diffusivity are assumed to be linked to the density of structures oriented perpendicular and parallel to the cortical surface, respectively. We hypothesized (1) that cortical DTI will reveal microstructural correlates for hemispheric specialization, particularly in the language and motor systems, and (2) that lateralization of cortical DTI parameters will show an age effect, paralleling age-related changes in activation, especially in the prefrontal cortex. We analysed data from healthy younger and older adult participants (N = 91). DTI and CT data were extracted from regions of the Destrieux atlas. Diffusion measures showed lateralization in specialized motor, language, visual, auditory and inferior parietal cortices. Age-dependent increased lateralization for DTI measures was observed in the prefrontal, angular, superior temporal and lateral occipital cortex. CT did not show any age-dependent alterations in lateralization. Our observations argue that cortical DTI can capture microstructural properties associated with functional specialization, resembling findings from histology. Age effects on diffusion measures in the integrative prefrontal and parietal areas may shed novel light on the atrophy-related plasticity in healthy ageing.
Collapse
Affiliation(s)
- Paweł P Wróbel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hanna Braaß
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benedikt M Frey
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marlene Bönstrup
- Department of Neurology, University Medical Center, Leipzig, Germany
| | - Stephanie Guder
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas K Frontzkowski
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan F Feldheim
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bastian Cheng
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Götz Thomalla
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Inga K Koerte
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fanny Quandt
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Focko L Higgen
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robert Schulz
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
5
|
Eichner C, Berger P, Klein CC, Friederici AD. Lateralization of dorsal fiber tract targeting Broca's area concurs with language skills during development. Prog Neurobiol 2024; 236:102602. [PMID: 38582324 DOI: 10.1016/j.pneurobio.2024.102602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/26/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Language is bounded to the left hemisphere in the adult brain and the functional lateralization can already be observed early during development. Here we investigate whether this is paralleled by a lateralization of the white matter structural language network. We analyze the strength and microstructural properties of language-related fiber tracts connecting temporal and frontal cortices with a separation of two dorsal tracts, one targeting the posterior Broca's area (BA44) and one targeting the precentral gyrus (BA6). In a large sample of young children (3-6 years), we demonstrate that, in contrast to the BA6-targeting tract, the microstructural asymmetry of the BA44-targeting fiber tract significantly correlates locally with different aspects of development. While the asymmetry in its anterior segment reflects age, the asymmetry in its posterior segment is associated with the children's language skills. These findings demonstrate a fine-grained structure-to-function mapping in the lateralized network and go beyond our current view of language-related human brain maturation.
Collapse
Affiliation(s)
- Cornelius Eichner
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Philipp Berger
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany; Research Group Milestones of Early Cognitive Development, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Cheslie C Klein
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany; Research Group Milestones of Early Cognitive Development, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany.
| |
Collapse
|
6
|
Ocklenburg S, Guo ZV. Cross-hemispheric communication: Insights on lateralized brain functions. Neuron 2024; 112:1222-1234. [PMID: 38458199 DOI: 10.1016/j.neuron.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/13/2023] [Accepted: 02/12/2024] [Indexed: 03/10/2024]
Abstract
On the surface, the two hemispheres of vertebrate brains look almost perfectly symmetrical, but several motor, sensory, and cognitive systems show a deeply lateralized organization. Importantly, the two hemispheres are connected by various commissures, white matter tracts that cross the brain's midline and enable cross-hemispheric communication. Cross-hemispheric communication has been suggested to play an important role in the emergence of lateralized brain functions. Here, we review current advances in understanding cross-hemispheric communication that have been made using modern neuroscientific tools in rodents and other model species, such as genetic labeling, large-scale recordings of neuronal activity, spatiotemporally precise perturbation, and quantitative behavior analyses. These findings suggest that the emergence of lateralized brain functions cannot be fully explained by largely static factors such as genetic variation and differences in structural brain asymmetries. In addition, learning-dependent asymmetric interactions between the left and right hemispheres shape lateralized brain functions.
Collapse
Affiliation(s)
- Sebastian Ocklenburg
- Department of Psychology, MSH Medical School Hamburg, Hamburg, Germany; ICAN Institute for Cognitive and Affective Neuroscience, MSH Medical School Hamburg, Hamburg, Germany; Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany.
| | - Zengcai V Guo
- School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
7
|
Friederici AD. Evolutionary neuroanatomical expansion of Broca's region serving a human-specific function. Trends Neurosci 2023; 46:786-796. [PMID: 37596132 DOI: 10.1016/j.tins.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/23/2023] [Accepted: 07/20/2023] [Indexed: 08/20/2023]
Abstract
The question concerning the evolution of language is directly linked to the debate on whether language and action are dependent or not and to what extent Broca's region serves as a common neural basis. The debate resulted in two opposing views, one arguing for and one against the dependence of language and action mainly based on neuroscientific data. This article presents an evolutionary neuroanatomical framework which may offer a solution to this dispute. It is proposed that in humans, Broca's region houses language and action independently in spatially separated subregions. This became possible due to an evolutionary expansion of Broca's region in the human brain, which was not paralleled by a similar expansion in the chimpanzee's brain, providing additional space needed for the neural representation of language in humans.
Collapse
Affiliation(s)
- Angela D Friederici
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology, Stephanstraße 1A, 04103 Leipzig, Germany.
| |
Collapse
|
8
|
Gallardo G, Eichner C, Sherwood CC, Hopkins WD, Anwander A, Friederici AD. Uncovering the Morphological Evolution of Language-Relevant Brain Areas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533103. [PMID: 36993711 PMCID: PMC10055248 DOI: 10.1101/2023.03.17.533103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Human language is supported by a cortical network involving Broca's area which comprises Brodmann Areas 44 and 45 (BA44, BA45). While cytoarchitectonic homolog areas have been identified in nonhuman primates, it remains unknown how these regions evolved to support human language. Here, we use histological data and advanced cortical registration methods to precisely compare the morphology of BA44 and 45 between humans and chimpanzees. We found a general expansion of Broca's areas in humans, with the left BA44 enlarging the most, growing anteriorly into a region known to process syntax. Together with recent functional studies, our findings show that BA44 evolved from a purely action-related region to a more expanded region in humans, with a posterior portion supporting action and an anterior portion supporting syntactic processes. Furthermore, our findings provide a solution for the longstanding debate concerning the structural and functional evolution of Broca's area and its role in action and language.
Collapse
Affiliation(s)
- Guillermo Gallardo
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Cornelius Eichner
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Chet C. Sherwood
- Department of Anthropology, The George Washington University, Washington DC, USA
| | - William D. Hopkins
- Department of Comparative Medicine, Michale E. Keeling Center for Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA
| | - Alfred Anwander
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Angela D. Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
9
|
Bruno A, Bludau S, Mohlberg H, Amunts K. Cytoarchitecture, intersubject variability, and 3D mapping of four new areas of the human anterior prefrontal cortex. Front Neuroanat 2022; 16:915877. [PMID: 36032993 PMCID: PMC9403835 DOI: 10.3389/fnana.2022.915877] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022] Open
Abstract
The dorsolateral prefrontal cortex (DLPFC) plays a key role in cognitive control and executive functions, including working memory, attention, value encoding, decision making, monitoring, and controlling behavioral strategies. However, the relationships between this variety of functions and the underlying cortical areas, which specifically contribute to these functions, are not yet well-understood. Existing microstructural maps differ in the number, localization, and extent of areas of the DLPFC. Moreover, there is a considerable intersubject variability both in the sulcal pattern and in the microstructure of this region, which impedes comparison with functional neuroimaging studies. The aim of this study was to provide microstructural, cytoarchitectonic maps of the human anterior DLPFC in 3D space. Therefore, we analyzed 10 human post-mortem brains and mapped their borders using a well-established approach based on statistical image analysis. Four new areas (i.e., SFS1, SFS2, MFG1, and MFG2) were identified in serial, cell-body stained brain sections that occupy the anterior superior frontal sulcus and middle frontal gyrus, i.e., a region corresponding to parts of Brodmann areas 9 and 46. Differences between areas in cytoarchitecture were captured using gray level index profiles, reflecting changes in the volume fraction of cell bodies from the surface of the brain to the cortex-white matter border. A hierarchical cluster analysis of these profiles indicated that areas of the anterior DLPFC displayed higher cytoarchitectonic similarity between each other than to areas of the neighboring frontal pole (areas Fp1 and Fp2), Broca's region (areas 44 and 45) of the ventral prefrontal cortex, and posterior DLPFC areas (8d1, 8d2, 8v1, and 8v2). Area-specific, cytoarchitectonic differences were found between the brains of males and females. The individual areas were 3D-reconstructed, and probability maps were created in the MNI Colin27 and ICBM152casym reference spaces to take the variability of areas in stereotaxic space into account. The new maps contribute to Julich-Brain and are publicly available as a resource for studying neuroimaging data, helping to clarify the functional and organizational principles of the human prefrontal cortex.
Collapse
Affiliation(s)
- Ariane Bruno
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Cécile and Oskar Vogt Institute for Brain Research, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- *Correspondence: Ariane Bruno
| | - Sebastian Bludau
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Hartmut Mohlberg
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Cécile and Oskar Vogt Institute for Brain Research, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
10
|
Kruchinina O, Stankova E, Guillemard D, Galperina E. Passive Voice Comprehension during Thematic-Role Assignment in Russian-Speaking Children Aged 4-6 Is Reflected in the Sensitivity of ERP to Noun Inflections. Brain Sci 2022; 12:693. [PMID: 35741579 PMCID: PMC9220815 DOI: 10.3390/brainsci12060693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 01/25/2023] Open
Abstract
Children tend to rely on semantics rather than syntax during sentence comprehension. In transitive sentences, with no reliance on semantics, the syntax-based strategy becomes critical. We aimed to describe developmental changes of brain mechanisms for syntax processing in typically developing (TD) four to six year old’s. A specially designed sentence-picture matching task using active (AV) and passive (PV) voice enforced children to use grammar cues for sentence comprehension. Fifty children with above >60% level of accuracy in PV sentences comprehension demonstrated brain sensitivity to voice grammar markers-inflections of the second noun phrase (NP2), which was expressed in a greater event-related potentials (ERP) amplitude to PV vs. AV sentences in four-, five-, and six-year-old children. The biphasic positive-negative component at 200−400 ms was registered in the frontocentral and bilateral temporoparietal areas. Only in six-year-old children P600 was registered in the right temporoparietal area. LAN-like negativity seems to be a mechanism for distinguishing AV from PV in the early stages of mastering syntax processing of transitive sentences in four to five year old children. Both behavioral and ERP results distinguished six-year-olds from four-year-old’s and five-year-old’s, reflecting the possible transition to the “adult-like” syntax-based thematic role assignment.
Collapse
Affiliation(s)
| | | | | | - Elizaveta Galperina
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, 194223 Saint-Petersburg, Russia; (O.K.); (E.S.); (D.G.)
| |
Collapse
|
11
|
Structural Brain Asymmetries for Language: A Comparative Approach across Primates. Symmetry (Basel) 2022. [DOI: 10.3390/sym14050876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Humans are the only species that can speak. Nonhuman primates, however, share some ‘domain-general’ cognitive properties that are essential to language processes. Whether these shared cognitive properties between humans and nonhuman primates are the results of a continuous evolution [homologies] or of a convergent evolution [analogies] remain difficult to demonstrate. However, comparing their respective underlying structure—the brain—to determinate their similarity or their divergence across species is critical to help increase the probability of either of the two hypotheses, respectively. Key areas associated with language processes are the Planum Temporale, Broca’s Area, the Arcuate Fasciculus, Cingulate Sulcus, The Insula, Superior Temporal Sulcus, the Inferior Parietal lobe, and the Central Sulcus. These structures share a fundamental feature: They are functionally and structurally specialised to one hemisphere. Interestingly, several nonhuman primate species, such as chimpanzees and baboons, show human-like structural brain asymmetries for areas homologous to key language regions. The question then arises: for what function did these asymmetries arise in non-linguistic primates, if not for language per se? In an attempt to provide some answers, we review the literature on the lateralisation of the gestural communication system, which may represent the missing behavioural link to brain asymmetries for language area’s homologues in our common ancestor.
Collapse
|
12
|
Tuckute G, Paunov A, Kean H, Small H, Mineroff Z, Blank I, Fedorenko E. Frontal language areas do not emerge in the absence of temporal language areas: A case study of an individual born without a left temporal lobe. Neuropsychologia 2022; 169:108184. [DOI: 10.1016/j.neuropsychologia.2022.108184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/07/2021] [Accepted: 02/15/2022] [Indexed: 10/19/2022]
|
13
|
Qi T, Schaadt G, Friederici AD. Associated functional network development and language abilities in children. Neuroimage 2021; 242:118452. [PMID: 34358655 PMCID: PMC8463838 DOI: 10.1016/j.neuroimage.2021.118452] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/14/2021] [Accepted: 08/03/2021] [Indexed: 11/26/2022] Open
Abstract
During childhood, the brain is gradually converging to the efficient functional architecture observed in adults. How the brain's functional architecture evolves with age, particularly in young children, is however, not well understood. We examined the functional connectivity of the core language regions, in association with cortical growth and language abilities, in 175 young children in the age range of 4 to 9 years. We analyzed the brain's developmental changes using resting-state functional and T1-weighted structural magnetic resonance imaging data. The results showed increased functional connectivity strength with age between the pars triangularis of the left inferior frontal gyrus and left temporoparietal regions (cohen's d = 0.54, CI: 0.24 - 0.84), associated with children's language abilities. Stronger functional connectivity between bilateral prefrontal and temporoparietal regions was associated with better language abilities regardless of age. In addition, the stronger functional connectivity between the left inferior frontal and temporoparietal regions was associated with larger surface area and thinner cortical thickness in these regions, which in turn was associated with superior language abilities. Thus, using functional and structural brain indices, coupled with behavioral measures, we elucidate the association of functional language network development, language ability, and cortical growth, thereby adding to our understanding of the neural basis of language acquisition in young children.
Collapse
Affiliation(s)
- Ting Qi
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Gesa Schaadt
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Department of Education and Psychology, Free University of Berlin, Berlin, Germany
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
14
|
Heyer DB, Wilbers R, Galakhova AA, Hartsema E, Braak S, Hunt S, Verhoog MB, Muijtjens ML, Mertens EJ, Idema S, Baayen JC, de Witt Hamer P, Klein M, McGraw M, Lein ES, de Kock CPJ, Mansvelder HD, Goriounova NA. Verbal and General IQ Associate with Supragranular Layer Thickness and Cell Properties of the Left Temporal Cortex. Cereb Cortex 2021; 32:2343-2357. [PMID: 34550325 PMCID: PMC9157308 DOI: 10.1093/cercor/bhab330] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/27/2022] Open
Abstract
The left temporal lobe is an integral part of the language system and its cortical structure and function associate with general intelligence. However, whether cortical laminar architecture and cellular properties of this brain area relate to verbal intelligence is unknown. Here, we addressed this using histological analysis and cellular recordings of neurosurgically resected temporal cortex in combination with presurgical IQ scores. We find that subjects with higher general and verbal IQ scores have thicker left (but not right) temporal cortex (Brodmann area 21, BA21). The increased thickness is due to the selective increase in layers 2 and 3 thickness, accompanied by lower neuron densities, and larger dendrites and cell body size of pyramidal neurons in these layers. Furthermore, these neurons sustain faster action potential kinetics, which improves information processing. Our results indicate that verbal mental ability associates with selective adaptations of supragranular layers and their cellular micro-architecture and function in left, but not right temporal cortex.
Collapse
Affiliation(s)
- D B Heyer
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - R Wilbers
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - A A Galakhova
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - E Hartsema
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - S Braak
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - S Hunt
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - M B Verhoog
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands.,Department of Human Biology, Neuroscience Institute, University of Cape Town, Cape Town 7925, South Africa
| | - M L Muijtjens
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - E J Mertens
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - S Idema
- Department of Neurosurgery, Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - J C Baayen
- Department of Neurosurgery, Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - P de Witt Hamer
- Department of Neurosurgery, Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - M Klein
- Department of Medical Psychology, Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Amsterdam 1081HZ, The Netherlands
| | - M McGraw
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - E S Lein
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - C P J de Kock
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - H D Mansvelder
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| | - N A Goriounova
- Department of Integrative Neurophysiology, Amsterdam Neuroscience, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
| |
Collapse
|
15
|
Unger N, Heim S, Hilger DI, Bludau S, Pieperhoff P, Cichon S, Amunts K, Mühleisen TW. Identification of Phonology-Related Genes and Functional Characterization of Broca's and Wernicke's Regions in Language and Learning Disorders. Front Neurosci 2021; 15:680762. [PMID: 34539327 PMCID: PMC8446646 DOI: 10.3389/fnins.2021.680762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/04/2021] [Indexed: 12/02/2022] Open
Abstract
Impaired phonological processing is a leading symptom of multifactorial language and learning disorders suggesting a common biological basis. Here we evaluated studies of dyslexia, dyscalculia, specific language impairment (SLI), and the logopenic variant of primary progressive aphasia (lvPPA) seeking for shared risk genes in Broca's and Wernicke's regions, being key for phonological processing within the complex language network. The identified "phonology-related genes" from literature were functionally characterized using Atlas-based expression mapping (JuGEx) and gene set enrichment. Out of 643 publications from the last decade until now, we extracted 21 candidate genes of which 13 overlapped with dyslexia and SLI, six with dyslexia and dyscalculia, and two with dyslexia, dyscalculia, and SLI. No overlap was observed between the childhood disorders and the late-onset lvPPA often showing symptoms of learning disorders earlier in life. Multiple genes were enriched in Gene Ontology terms of the topics learning (CNTNAP2, CYFIP1, DCDC2, DNAAF4, FOXP2) and neuronal development (CCDC136, CNTNAP2, CYFIP1, DCDC2, KIAA0319, RBFOX2, ROBO1). Twelve genes showed above-average expression across both regions indicating moderate-to-high gene activity in the investigated cortical part of the language network. Of these, three genes were differentially expressed suggesting potential regional specializations: ATP2C2 was upregulated in Broca's region, while DNAAF4 and FOXP2 were upregulated in Wernicke's region. ATP2C2 encodes a magnesium-dependent calcium transporter which fits with reports about disturbed calcium and magnesium levels for dyslexia and other communication disorders. DNAAF4 (formerly known as DYX1C1) is involved in neuronal migration supporting the hypothesis of disturbed migration in dyslexia. FOXP2 is a transcription factor that regulates a number of genes involved in development of speech and language. Overall, our interdisciplinary and multi-tiered approach provided evidence that genetic and transcriptional variation of ATP2C2, DNAAF4, and FOXP2 may play a role in physiological and pathological aspects of phonological processing.
Collapse
Affiliation(s)
- Nina Unger
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Stefan Heim
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
- JARA-Brain, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Dominique I. Hilger
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Sebastian Bludau
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Peter Pieperhoff
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Sven Cichon
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Katrin Amunts
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- JARA-Brain, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Thomas W. Mühleisen
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
16
|
Graïc JM, Peruffo A, Corain L, Centelleghe C, Granato A, Zanellato E, Cozzi B. Asymmetry in the Cytoarchitecture of the Area 44 Homolog of the Brain of the Chimpanzee Pan troglodytes. Front Neuroanat 2020; 14:55. [PMID: 32973465 PMCID: PMC7471632 DOI: 10.3389/fnana.2020.00055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022] Open
Abstract
The evolution of the brain in apes and man followed a joint pathway stemming from common ancestors 5-10 million years ago. However, although apparently sharing similar organization and neurochemical properties, association areas of the isocortex remain one of the cornerstones of what sets humans aside from other primates. Brodmann's area 44, the area of Broca, is known for its implication in speech, and thus indirectly is a key mark of human uniqueness. This latero-caudal part of the frontal lobe shows a marked functional asymmetry in humans, and takes part in other complex functions, including learning and imitation, tool use, music and contains the mirror neuron system (MNS). Since the main features in the cytoarchitecture of Broca's area remains relatively constant in hominids, including in our closest relative, the chimpanzee Pan troglodytes, investigations on the finer structure, cellular organization, connectivity and eventual asymmetry of area 44 have a direct bearing on the understanding of the neural mechanisms at the base of our language. The semi-automated image analysis technology that we employed in the current study showed that the structure of the cortical layers of the chimpanzee contains elements of asymmetry that are discussed in relation to the corresponding human areas and the putative resulting disparity of function.
Collapse
Affiliation(s)
- Jean-Marie Graïc
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Antonella Peruffo
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Livio Corain
- Department of Management and Engineering, University of Padua, Padua, Italy
| | - Cinzia Centelleghe
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Alberto Granato
- Department of Psychology, Catholic University of the Sacred Heart, Milan, Italy
| | - Emanuela Zanellato
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Bruno Cozzi
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| |
Collapse
|
17
|
Lyakso E, Frolova O, Matveev Y. Speech Features and Electroencephalogram Parameters in 4- to 11-Year-Old Children. Front Behav Neurosci 2020; 14:30. [PMID: 32231524 PMCID: PMC7088452 DOI: 10.3389/fnbeh.2020.00030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 02/12/2020] [Indexed: 11/13/2022] Open
Abstract
The goal of the study is to investigate a correlation between different levels of speech organization, indicating the physiological processes of maturation of the vocal tract structures and brain regions associated with speech and language, and basic electroencephalogram (EEG) rhythms, reflecting the age-related dynamics of maturation of brain structures in children aged 4-11 years. The complex method of analysis, including EEG registration, clinical and spectral analysis of EEG; dichotic listening, identifying the profile of functional lateral asymmetry (PFLA), and phonemic hearing of the child; recording, linguistic, and acoustic analysis of child speech; and identification of speech characteristics reflecting the formation of its different levels, was used. Two complementary experimental series were conducted: the correlation between EEG parameters, speech features, dichotic listening, the PFLA, and phonemic hearing of the child in the age dynamics of 4-11 years (first); the specificity of EEG patterns in children at different stages of reading skills formation (second). The result of this study showed the correlation between acoustic and linguistic features of child speech and brain activity. The analysis of EEG and acoustic features of child speech revealed the correlation between pitch and pitch range values in spontaneous speech and theta-rhythm intensity in EEG. High values of pitch and its variation in younger children (4-6 years) are related to the intensity of theta rhythm in the EEG pattern, as this rhythm is most expressed in younger children. It was revealed that the alpha rhythm is asymmetrically localized in children with clear pronunciation of words (which determines the intelligibility of their speech) that is typical for 6.5- to 11-year-old children. The formation of reading skills in a child is associated with a change in the characteristics of the alpha rhythm-from irregular, unstable, low frequency, and low amplitude in children at the beginning of reading skills mastering to medium and low amplitude, regular, asymmetrically localized in children reading words and phrases. The specifics of the relation between brain activity and different levels of speech formation at different child's age periods are discussed.
Collapse
Affiliation(s)
- Elena Lyakso
- Laboratory of Child Speech Research Group, Department of Higher Nervous Activity and Psychophysiology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Olga Frolova
- Laboratory of Child Speech Research Group, Department of Higher Nervous Activity and Psychophysiology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Yuri Matveev
- Laboratory of Child Speech Research Group, Department of Higher Nervous Activity and Psychophysiology, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
18
|
Vannucci RC, Heier LA, Vannucci SJ. Cerebral asymmetry during development using linear measures from MRI. Early Hum Dev 2019; 139:104853. [PMID: 31473466 DOI: 10.1016/j.earlhumdev.2019.104853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 01/31/2023]
Abstract
Asymmetry of the human brain is a well-known phenomenon, but the nature and extent of these differences throughout postnatal development have not been examined. Accordingly, linear measurements of the brains of 121 infants, children, and adolescents were determined to ascertain cerebral hemispheric asymmetries. Using multiple statistical methods, the results showed that: 1) the frontal lobe is wider on the right, while the occipital lobe is wider on the left; 2) there are no side to side differences in cerebral hemispheric length or height; and 3) there are no major sex differences. Especially notable is the lack of any correlation between side to side differences in length, width, or height and increasing age, which was also the case for cerebral hemispheric area or volume with increasing age. Regarding petalias: 1) the right frontal petalia occurs in 61%, the left occipital in 60%, and both petalias in 36% of the cohort; 2) the right frontal and left occipital petalias are of similar lengths; 3) the distances of both petalias increase with advancing age but not when scaled to either cerebral hemispheric area or volume, indicating that petalias are equally prominent early in postnatal life compared to later development; and 4) there are no major sex differences in the frequency or magnitude of either petalia. These findings provide comprehensive new information regarding age and sex related cerebral hemispheric asymmetries during development.
Collapse
Affiliation(s)
- Robert C Vannucci
- Department of Anthropology, Florida Atlantic University, Boca Raton, FL, USA.
| | - Linda A Heier
- Department of Radiology (Neuroradiology), Weill Cornell Medical College, NY, New York, USA
| | - Susan J Vannucci
- Department of Pediatrics, Weill Cornell Medical College, NY, New York, USA
| |
Collapse
|
19
|
Wang Y, Hao L, Zhang Y, Zuo C, Wang D. Entorhinal cortex volume, thickness, surface area and curvature trajectories over the adult lifespan. Psychiatry Res Neuroimaging 2019; 292:47-53. [PMID: 31521943 DOI: 10.1016/j.pscychresns.2019.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 01/23/2023]
Abstract
The entorhinal cortex (ERC) acts as a connection between the hippocampus and temporal cortex and plays a key role in memory retrieval and navigation. The morphology of this brain region changes with age. However, there are few quantitative magnetic resonance imaging studies of ERC morphology across the healthy adult lifespan. In this study, we quantified ERC volume, thickness, surface area, and curvature in a large number of subjects spanning seven decades of life. Using structural MRI data from 563 healthy subjects ranging from 19 to 86 years of age, we explored the adult lifespan trajectory of ERC volume, thickness, surface and curvature. ERC volume, thickness, and surface area initially increased with age, reaching a peak at about 32 years, 40 years, and 50 years of age, respectively, after which they decreased with age. ERC volume and surface area were hemispherically leftward asymmetric, whereas ERC thickness was hemispherically rightward asymmetric, with no gender differences. The direction of asymmetry differed across the measures. This informs previous inconsistencies in reports of ERC asymmetry. ERC aging began in mid-adulthood. At this stage of life, it may be important to adopt some strategies to reduce the effects of aging on cognition.
Collapse
Affiliation(s)
- Yanpei Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Lei Hao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yuning Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Institute of Psychiatry, Psychology, & Neurosciences, King's College London, London, UK
| | - Chenyi Zuo
- College of Educational Science, Anhui Normal University, Wuhu, China.
| | - Daoyang Wang
- College of Educational Science, Anhui Normal University, Wuhu, China.
| |
Collapse
|
20
|
Bain JS, Filo S, Mezer AA. The robust and independent nature of structural STS asymmetries. Brain Struct Funct 2019; 224:3171-3182. [DOI: 10.1007/s00429-019-01952-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/31/2019] [Indexed: 10/26/2022]
|
21
|
Matsuzaki J, Kuschner ES, Blaskey L, Bloy L, Kim M, Ku M, Edgar JC, Embick D, Roberts TPL. Abnormal auditory mismatch fields are associated with communication impairment in both verbal and minimally verbal/nonverbal children who have autism spectrum disorder. Autism Res 2019; 12:1225-1235. [PMID: 31136103 DOI: 10.1002/aur.2136] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/13/2019] [Indexed: 11/08/2022]
Abstract
Abnormal auditory discrimination neural processes, indexed by mismatch fields (MMFs) recorded by magnetoencephalography (MEG), have been reported in verbal children with ASD. Association with clinical measures indicates that delayed MMF components are associated with poorer language and communication performance. At present, little is known about neural correlates of language and communication skills in extremely language impaired (minimally-verbal/non-verbal) children who have ASD: ASD-MVNV. It is hypothesized that MMF delays observed in language-impaired but nonetheless verbal children with ASD will be exacerbated in ASD-MVNV. The present study investigated this hypothesis, examining MMF responses bilaterally during an auditory oddball paradigm with vowel stimuli in ASD-MVNV, in a verbal ASD cohort without cognitive impairment and in typically developing (TD) children. The verbal ASD cohort without cognitive impairment was split into those demonstrating considerable language impairment (CELF core language index <85; "ASD-LI") versus those with less or no language impairment (CELF CLI >85; "ASD-V"). Eighty-four participants (8-12 years) were included in final analysis: ASD-MVNV: n = 9, 9.67 ± 1.41 years, ASD: n = 48, (ASD-V: n = 27, 10.55 ± 1.21 years, ASD-LI: n = 21, 10.67 ± 1.20 years) and TD: n = 27, 10.14 ± 1.38 years. Delayed MMF latencies were found bilaterally in ASD-MVNV compared to verbal ASD (both ASD-V and ASD-LI) and TD children. Delayed MMF responses were associated with diminished language and communication skills. Furthermore, whereas the TD children showed leftward lateralization of MMF amplitude, ASD-MVNV and verbal ASD (ASD-V and ASD-LI) showed abnormal rightward lateralization. Findings suggest delayed auditory discrimination processes and abnormal rightward laterality as objective markers of language/communication skills in both verbal and MVNV children who have ASD. Autism Res 2019, 12: 1225-1235. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Brain imaging showed abnormal auditory discrimination processes in minimally-verbal/non-verbal children (MVNV) who have autism spectrum disorder (ASD). Delays in auditory discrimination were associated with impaired language and communication skills. Findings suggest these auditory neural measures may be objective markers of language and communication skills in both verbal and, previously-understudied, MVNV children who have ASD.
Collapse
Affiliation(s)
- Junko Matsuzaki
- Department of Radiology, Lurie Family Foundations MEG Imaging Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Emily S Kuschner
- Department of Radiology, Lurie Family Foundations MEG Imaging Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Center for Autism Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Lisa Blaskey
- Department of Radiology, Lurie Family Foundations MEG Imaging Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Center for Autism Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Luke Bloy
- Department of Radiology, Lurie Family Foundations MEG Imaging Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Mina Kim
- Department of Radiology, Lurie Family Foundations MEG Imaging Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Center for Autism Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Matthew Ku
- Department of Radiology, Lurie Family Foundations MEG Imaging Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - James Christopher Edgar
- Department of Radiology, Lurie Family Foundations MEG Imaging Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - David Embick
- Department of Linguistics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Timothy P L Roberts
- Department of Radiology, Lurie Family Foundations MEG Imaging Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Linguistics, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
22
|
Bain JS, Yeatman JD, Schurr R, Rokem A, Mezer AA. Evaluating arcuate fasciculus laterality measurements across dataset and tractography pipelines. Hum Brain Mapp 2019; 40:3695-3711. [PMID: 31106944 DOI: 10.1002/hbm.24626] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/18/2019] [Accepted: 05/01/2019] [Indexed: 11/11/2022] Open
Abstract
The arcuate fasciculi are white-matter pathways that connect frontal and temporal lobes in each hemisphere. The arcuate plays a key role in the language network and is believed to be left-lateralized, in line with left hemisphere dominance for language. Measuring the arcuate in vivo requires diffusion magnetic resonance imaging-based tractography, but asymmetry of the in vivo arcuate is not always reliably detected in previous studies. It is unknown how the choice of tractography algorithm, with each method's freedoms, constraints, and vulnerabilities to false-positive and -negative errors, impacts findings of arcuate asymmetry. Here, we identify the arcuate in two independent datasets using a number of tractography strategies and methodological constraints, and assess their impact on estimates of arcuate laterality. We test three tractography methods: a deterministic, a probabilistic, and a tractography-evaluation (LiFE) algorithm. We extract the arcuate from the whole-brain tractogram, and compare it to an arcuate bundle constrained even further by selecting only those streamlines that connect to anatomically relevant cortical regions. We test arcuate macrostructure laterality, and also evaluate microstructure profiles for properties such as fractional anisotropy and quantitative R1. We find that both tractography choice and implementing the cortical constraints substantially impact estimates of all indices of arcuate laterality. Together, these results emphasize the effect of the tractography pipeline on estimates of arcuate laterality in both macrostructure and microstructure.
Collapse
Affiliation(s)
- Jonathan S Bain
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jason D Yeatman
- Institute for Learning & Brain Sciences and Department of Speech and Hearing Science, The University of Washington, Seattle, Washington, USA
| | - Roey Schurr
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ariel Rokem
- The University of Washington eScience Institute, The University of Washington, Seattle, Washington, USA
| | - Aviv A Mezer
- The Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
23
|
Schmitz J, Fraenz C, Schlüter C, Friedrich P, Jung RE, Güntürkün O, Genç E, Ocklenburg S. Hemispheric asymmetries in cortical gray matter microstructure identified by neurite orientation dispersion and density imaging. Neuroimage 2019; 189:667-675. [DOI: 10.1016/j.neuroimage.2019.01.079] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/21/2019] [Accepted: 01/30/2019] [Indexed: 01/03/2023] Open
|
24
|
Petanjek Z, Sedmak D, Džaja D, Hladnik A, Rašin MR, Jovanov-Milosevic N. The Protracted Maturation of Associative Layer IIIC Pyramidal Neurons in the Human Prefrontal Cortex During Childhood: A Major Role in Cognitive Development and Selective Alteration in Autism. Front Psychiatry 2019; 10:122. [PMID: 30923504 PMCID: PMC6426783 DOI: 10.3389/fpsyt.2019.00122] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 02/18/2019] [Indexed: 12/12/2022] Open
Abstract
The human specific cognitive shift starts around the age of 2 years with the onset of self-awareness, and continues with extraordinary increase in cognitive capacities during early childhood. Diffuse changes in functional connectivity in children aged 2-6 years indicate an increase in the capacity of cortical network. Interestingly, structural network complexity does not increase during this time and, thus, it is likely to be induced by selective maturation of a specific neuronal subclass. Here, we provide an overview of a subclass of cortico-cortical neurons, the associative layer IIIC pyramids of the human prefrontal cortex. Their local axonal collaterals are in control of the prefrontal cortico-cortical output, while their long projections modulate inter-areal processing. In this way, layer IIIC pyramids are the major integrative element of cortical processing, and changes in their connectivity patterns will affect global cortical functioning. Layer IIIC neurons have a unique pattern of dendritic maturation. In contrast to other classes of principal neurons, they undergo an additional phase of extensive dendritic growth during early childhood, and show characteristic molecular changes. Taken together, circuits associated with layer IIIC neurons have the most protracted period of developmental plasticity. This unique feature is advanced but also provides a window of opportunity for pathological events to disrupt normal formation of cognitive circuits involving layer IIIC neurons. In this manuscript, we discuss how disrupted dendritic and axonal maturation of layer IIIC neurons may lead into global cortical disconnectivity, affecting development of complex communication and social abilities. We also propose a model that developmentally dictated incorporation of layer IIIC neurons into maturing cortico-cortical circuits between 2 to 6 years will reveal a previous (perinatal) lesion affecting other classes of principal neurons. This "disclosure" of pre-existing functionally silent lesions of other neuronal classes induced by development of layer IIIC associative neurons, or their direct alteration, could be found in different forms of autism spectrum disorders. Understanding the gene-environment interaction in shaping cognitive microcircuitries may be fundamental for developing rehabilitation and prevention strategies in autism spectrum and other cognitive disorders.
Collapse
Affiliation(s)
- Zdravko Petanjek
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Dora Sedmak
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Domagoj Džaja
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ana Hladnik
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mladen Roko Rašin
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Nataša Jovanov-Milosevic
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
25
|
Younger JW, Lee KW, Demir-Lira OE, Booth JR. Brain lateralization of phonological awareness varies by maternal education. Dev Sci 2019; 22:e12807. [PMID: 30735285 DOI: 10.1111/desc.12807] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/26/2019] [Accepted: 01/29/2019] [Indexed: 12/01/2022]
Abstract
Socioeconomic status (SES) has been shown to influence language skills, with children of lower SES backgrounds performing worse on language assessments compared to their higher SES peers. While there is abundant behavioral research on the effects of SES, whether there are differences in the neural mechanisms used to support language skill is less established. In this study, we examined the relation between maternal education (ME), a component of SES, and neural mechanisms of language. We focused on Kindergarten children, at the beginning of formal reading education, and on a pre-reading skill, phonological awareness-the ability to distinguish or manipulate the sounds of language. We determined ME-related differences in neural activity by examining a skill-matched sample of typically achieving 5-year-old children as they performed a rhyme judgment task. We examined brain lateralization in two language processing regions, the inferior frontal gyrus (IFG) and superior temporal gyrus (STG). In the IFG, lateralization was related to ME but not skill: children with low ME showed bilateral activation compared to children with higher ME who showed leftward lateralization. In the STG, there was a skill by ME interaction on lateralization, such that children with high ME showed a positive relation between rightward lateralization and skill and children with low ME showed a positive relation between leftward lateralization and skill. Thus, we demonstrated ME is related to differences in neural recruitment during language processing, yet this difference in recruitment is not indicative of a deficit in linguistic processing in Kindergarten children.
Collapse
Affiliation(s)
- Jessica W Younger
- Department of Communication Sciences and Disorders, The University of Texas at Austin, Austin, Texas
| | - Keun-Woo Lee
- Department of Communication Sciences and Disorders, The University of Texas at Austin, Austin, Texas
| | - Ozlem E Demir-Lira
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, Iowa
| | - James R Booth
- Department of Communication Sciences and Disorders, The University of Texas at Austin, Austin, Texas.,Department of Psychology and Human Development, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
26
|
Ogawa R, Kagitani-Shimono K, Matsuzaki J, Tanigawa J, Hanaie R, Yamamoto T, Tominaga K, Hirata M, Mohri I, Taniike M. Abnormal cortical activation during silent reading in adolescents with autism spectrum disorder. Brain Dev 2019; 41:234-244. [PMID: 30448302 DOI: 10.1016/j.braindev.2018.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 09/15/2018] [Accepted: 10/25/2018] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Autism spectrum disorder (ASD) is a developmental disorder characterized by communication deficits and social difficulties, and individuals with ASD frequently exhibit varied levels of language abilities. However, the neurophysiological mechanisms underlying their language deficits remain unclear. To gain insight into the neurophysiological mechanisms of receptive language deficits, we assessed cortical activation patterns in adolescents with ASD during silent word-reading. METHODS We used magnetoencephalography to measure cortical activation during a silent word-reading task in 14 adolescent boys with high-functioning ASD and 17 adolescent boys with typical development (TD). RESULTS Compared with participants with TD, those with ASD exhibited significantly decreased cortical activation in the left middle temporal gyrus, left temporoparietal junction, bilateral superior temporal gyrus, left posterior insula, and right occipitotemporal gyrus, and increased activation in the right anterior insula. Participants with ASD also exhibited a lack of left-lateralization in the central sulcus and abnormal right-lateralization in the anterior insula area. Furthermore, in participants with ASD, we found that abnormal activation of the right central sulcus correlated significantly with lower visual word comprehension scores, and that decreased activation of the right anterior insula correlated significantly with the severity of social interaction difficulties. CONCLUSION Our findings suggest that atypical cortical activation and lateralization in the temporal-frontal area, which is associated with higher-order language processing functions, such as semantic analysis, may play a crucial role in visual word comprehension and social interaction difficulties in adolescents with ASD.
Collapse
Affiliation(s)
- Rei Ogawa
- United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Kuriko Kagitani-Shimono
- United Graduate School of Child Development, Osaka University, Osaka, Japan; Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Junko Matsuzaki
- United Graduate School of Child Development, Osaka University, Osaka, Japan; Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Junpei Tanigawa
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryuzo Hanaie
- United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Tomoka Yamamoto
- Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Koji Tominaga
- United Graduate School of Child Development, Osaka University, Osaka, Japan; Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masayuki Hirata
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ikuko Mohri
- United Graduate School of Child Development, Osaka University, Osaka, Japan; Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masako Taniike
- United Graduate School of Child Development, Osaka University, Osaka, Japan; Molecular Research Center for Children's Mental Development, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
27
|
Kostović I, Sedmak G, Judaš M. Neural histology and neurogenesis of the human fetal and infant brain. Neuroimage 2018; 188:743-773. [PMID: 30594683 DOI: 10.1016/j.neuroimage.2018.12.043] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 01/11/2023] Open
Abstract
The human brain develops slowly and over a long period of time which lasts for almost three decades. This enables good spatio-temporal resolution of histogenetic and neurogenetic events as well as an appropriate and clinically relevant timing of these events. In order to successfully apply in vivo neuroimaging data, in analyzing both the normal brain development and the neurodevelopmental origin of major neurological and mental disorders, it is important to correlate these neuroimaging data with the existing data on morphogenetic, histogenetic and neurogenetic events. Furthermore, when performing such correlation, the genetic, genomic, and molecular biology data on phenotypic specification of developing brain regions, areas and neurons should also be included. In this review, we focus on early developmental periods (form 8 postconceptional weeks to the second postnatal year) and describe the microstructural organization and neural circuitry elements of the fetal and early postnatal human cerebrum.
Collapse
Affiliation(s)
- I Kostović
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Centre of Excellence for Basic, Clinical and Translational Neuroscience, Šalata 12, 10000, Zagreb, Croatia.
| | - G Sedmak
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Centre of Excellence for Basic, Clinical and Translational Neuroscience, Šalata 12, 10000, Zagreb, Croatia.
| | - M Judaš
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Centre of Excellence for Basic, Clinical and Translational Neuroscience, Šalata 12, 10000, Zagreb, Croatia.
| |
Collapse
|
28
|
|
29
|
Keller SS, Roberts N, Baker G, Sluming V, Cezayirli E, Mayes A, Eldridge P, Marson AG, Wieshmann UC. A voxel-based asymmetry study of the relationship between hemispheric asymmetry and language dominance in Wada tested patients. Hum Brain Mapp 2018; 39:3032-3045. [PMID: 29569808 PMCID: PMC6055618 DOI: 10.1002/hbm.24058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 01/08/2023] Open
Abstract
Determining the anatomical basis of hemispheric language dominance (HLD) remains an important scientific endeavor. The Wada test remains the gold standard test for HLD and provides a unique opportunity to determine the relationship between HLD and hemispheric structural asymmetries on MRI. In this study, we applied a whole‐brain voxel‐based asymmetry (VBA) approach to determine the relationship between interhemispheric structural asymmetries and HLD in a large consecutive sample of Wada tested patients. Of 135 patients, 114 (84.4%) had left HLD, 10 (7.4%) right HLD, and 11 (8.2%) bilateral language representation. Fifty‐four controls were also studied. Right‐handed controls and right‐handed patients with left HLD had comparable structural brain asymmetries in cortical, subcortical, and cerebellar regions that have previously been documented in healthy people. However, these patients and controls differed in structural asymmetry of the mesial temporal lobe and a circumscribed region in the superior temporal gyrus, suggesting that only asymmetries of these regions were due to brain alterations caused by epilepsy. Additional comparisons between patients with left and right HLD, matched for type and location of epilepsy, revealed that structural asymmetries of insula, pars triangularis, inferior temporal gyrus, orbitofrontal cortex, ventral temporo‐occipital cortex, mesial somatosensory cortex, and mesial cerebellum were significantly associated with the side of HLD. Patients with right HLD and bilateral language representation were significantly less right‐handed. These results suggest that structural asymmetries of an insular‐fronto‐temporal network may be related to HLD.
Collapse
Affiliation(s)
- Simon S Keller
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom.,The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Neil Roberts
- Edinburgh Imaging, The Queens Medical Research Institute (QMRI), School of Clinical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Gus Baker
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom.,The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Vanessa Sluming
- Department of Psychological Sciences, Institute of Psychology, Health and Society, University of Liverpool, Liverpool, United Kingdom
| | - Enis Cezayirli
- School of Medicine, University of St Andrews, Scotland, United Kingdom
| | - Andrew Mayes
- School of Psychological Sciences, University of Manchester, Manchester, United Kingdom
| | - Paul Eldridge
- The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Anthony G Marson
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom.,The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| | - Udo C Wieshmann
- The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
30
|
Fischl B, Sereno MI. Microstructural parcellation of the human brain. Neuroimage 2018; 182:219-231. [PMID: 29496612 DOI: 10.1016/j.neuroimage.2018.01.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 12/27/2022] Open
Abstract
The human cerebral cortex is composed of a mosaic of areas thought to subserve different functions. The parcellation of the cortex into areas has a long history and has been carried out using different combinations of structural, connectional, receptotopic, and functional properties. Here we give a brief overview of the history of cortical parcellation, and explore different microstructural properties and analysis techniques that can be used to define the borders between different regions. We show that accounting for the 3D geometry of the highly folded human cortex is especially critical for accurate parcellation. We close with some thoughts on future directions and best practices for combining modalities.
Collapse
Affiliation(s)
- Bruce Fischl
- Department of Radiology, Harvard Medical School, United States; Athinoula A. Martinos Center for Biomedical Imaging Mass, General Hospital, United States; Division of Health Sciences and Technology and Engineering and Computer Science MIT, Cambridge, MA, United States.
| | - Martin I Sereno
- Department of Psychology, SDSU Imaging Center, San Diego State University, San Diego, CA 92182, United States.
| |
Collapse
|
31
|
Atypical structural and functional motor networks in autism. PROGRESS IN BRAIN RESEARCH 2018; 238:207-248. [DOI: 10.1016/bs.pbr.2018.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Thengone DJ, Voss HU, Fridman EA, Schiff ND. Local changes in network structure contribute to late communication recovery after severe brain injury. Sci Transl Med 2017; 8:368re5. [PMID: 27928029 DOI: 10.1126/scitranslmed.aaf6113] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 11/17/2016] [Indexed: 12/14/2022]
Abstract
Spontaneous recovery of brain function after severe brain injury may evolve over a long time period and is likely to involve both structural and functional reorganization of brain networks. We longitudinally tracked the recovery of communication in a patient with severe brain injury using multimodal brain imaging techniques and quantitative behavioral assessments measured at the bedside over a period of 2 years and 9 months (21 months after initial injury). Structural diffusion tensor imaging revealed changes in brain structure across interhemispheric connections and in local brain regions that support language and visuomotor function. These findings correlated with functional brain imaging using functional magnetic resonance imaging and positron emission tomography, which demonstrated increased language network recruitment in response to natural speech stimuli, graded increases in interhemispheric interactions of language-related frontal cortices, and increased cerebral metabolic activity in the language-dominant hemisphere. In addition, electrophysiological studies showed recovery of synchronization of sleep spindling activity. The observed changes suggest a specific mechanism for late recovery of communication after severe brain injury and provide support for the potential of activity-dependent structural and functional remodeling over long time periods.
Collapse
Affiliation(s)
- Daniel J Thengone
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA.
| | - Henning U Voss
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA.,Citigroup Biomedical Imaging Center, Department of Radiology, Weill Cornell Medical College, New York, NY 10021, USA
| | - Esteban A Fridman
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | - Nicholas D Schiff
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065, USA.,Department of Neurology, Weill Cornell Medical College, New York, NY 10065, USA.,Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
33
|
Individual variability in verbal fluency correlates with γ-aminobutyric acid concentration in the left inferior frontal gyrus. Neuroreport 2017; 27:987-91. [PMID: 27454241 DOI: 10.1097/wnr.0000000000000645] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A particular feature of the inferior frontal gyrus (IFG), which is considered a central region for language processing, is leftward functional/anatomical asymmetry. However, previous studies have not clearly shown lateralization of neurotransmitters in the cortical regions. Using proton magnetic resonance spectroscopy, we measured γ-aminobutyric acid (GABA) concentrations in the bilateral IFG. To evaluate individual variability in linguistic performance, we further used a verbal fluency test. Although GABA+/creatine (Cr) values were not different between the left and the right IFG, we found a significant correlation between category fluency scores and GABA+/Cr values in the left IFG. No correlation was found between letter fluency scores and GABA+/Cr values. We also confirmed that the result was independent of the references used (Cr and H2O). Our results show a new physiological basis of linguistic performance as well as leftward asymmetry of the IFG.
Collapse
|
34
|
Friederici AD, Chomsky N, Berwick RC, Moro A, Bolhuis JJ. Language, mind and brain. Nat Hum Behav 2017; 1:713-722. [DOI: 10.1038/s41562-017-0184-4] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/21/2017] [Indexed: 11/10/2022]
|
35
|
Abstract
The evolution of language correlates with distinct changes in the primate brain. The present article compares language-related brain regions and their white matter connectivity in the developing and mature human brain with the respective structures in the nonhuman primate brain. We will see that the functional specificity of the posterior portion of Broca's area (Brodmann area [BA 44]) and its dorsal fiber connection to the temporal cortex, shown to support the processing of structural hierarchy in humans, makes a crucial neural difference between the species. This neural circuit may thus be fundamental for the human syntactic capacity as the core of language.
Collapse
Affiliation(s)
- Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1A, 04103, Leipzig, Germany.
| |
Collapse
|
36
|
Ellwood-Lowe ME, Sacchet MD, Gotlib IH. The application of neuroimaging to social inequity and language disparity: A cautionary examination. Dev Cogn Neurosci 2016; 22:1-8. [PMID: 27744097 PMCID: PMC5135574 DOI: 10.1016/j.dcn.2016.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/28/2016] [Accepted: 10/02/2016] [Indexed: 10/24/2022] Open
Abstract
In the nascent field of the cognitive neuroscience of socioeconomic status (SES), researchers are using neuroimaging to examine how growing up in poverty affects children's neurocognitive development, particularly their language abilities. In this review we highlight difficulties inherent in the frequent use of reverse inference to interpret SES-related abnormalities in brain regions that support language. While there is growing evidence suggesting that SES moderates children's developing brain structure and function, no studies to date have elucidated explicitly how these neural findings are related to variations in children's language abilities, or precisely what it is about SES that underlies or contributes to these differences. This issue is complicated by the fact that SES is confounded with such linguistic factors as cultural language use, first language, and bilingualism. Thus, SES-associated differences in brain regions that support language may not necessarily indicate differences in neurocognitive abilities. In this review we consider the multidimensionality of SES, discuss studies that have found SES-related differences in structure and function in brain regions that support language, and suggest future directions for studies in the area of cognitive neuroscience of SES that are less reliant on reverse inference.
Collapse
Affiliation(s)
| | - Matthew D Sacchet
- Department of Psychology, Stanford University, Stanford, CA 94305, USA; Neurosciences Program, Stanford University, Stanford, CA 94305, USA
| | - Ian H Gotlib
- Department of Psychology, Stanford University, Stanford, CA 94305, USA; Neurosciences Program, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
37
|
Silbereis JC, Pochareddy S, Zhu Y, Li M, Sestan N. The Cellular and Molecular Landscapes of the Developing Human Central Nervous System. Neuron 2016; 89:248-68. [PMID: 26796689 DOI: 10.1016/j.neuron.2015.12.008] [Citation(s) in RCA: 498] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The human CNS follows a pattern of development typical of all mammals, but certain neurodevelopmental features are highly derived. Building the human CNS requires the precise orchestration and coordination of myriad molecular and cellular processes across a staggering array of cell types and over a long period of time. Dysregulation of these processes affects the structure and function of the CNS and can lead to neurological or psychiatric disorders. Recent technological advances and increased focus on human neurodevelopment have enabled a more comprehensive characterization of the human CNS and its development in both health and disease. The aim of this review is to highlight recent advancements in our understanding of the molecular and cellular landscapes of the developing human CNS, with focus on the cerebral neocortex, and the insights these findings provide into human neural evolution, function, and dysfunction.
Collapse
Affiliation(s)
- John C Silbereis
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sirisha Pochareddy
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Ying Zhu
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Mingfeng Li
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Department of Genetics and Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT 06510, USA; Section of Comparative Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Yale Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
38
|
Origins of the brain networks for advanced mathematics in expert mathematicians. Proc Natl Acad Sci U S A 2016; 113:4909-17. [PMID: 27071124 DOI: 10.1073/pnas.1603205113] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The origins of human abilities for mathematics are debated: Some theories suggest that they are founded upon evolutionarily ancient brain circuits for number and space and others that they are grounded in language competence. To evaluate what brain systems underlie higher mathematics, we scanned professional mathematicians and mathematically naive subjects of equal academic standing as they evaluated the truth of advanced mathematical and nonmathematical statements. In professional mathematicians only, mathematical statements, whether in algebra, analysis, topology or geometry, activated a reproducible set of bilateral frontal, Intraparietal, and ventrolateral temporal regions. Crucially, these activations spared areas related to language and to general-knowledge semantics. Rather, mathematical judgments were related to an amplification of brain activity at sites that are activated by numbers and formulas in nonmathematicians, with a corresponding reduction in nearby face responses. The evidence suggests that high-level mathematical expertise and basic number sense share common roots in a nonlinguistic brain circuit.
Collapse
|
39
|
Developmental differences in beta and theta power during sentence processing. Dev Cogn Neurosci 2016; 19:19-30. [PMID: 26774879 PMCID: PMC6988103 DOI: 10.1016/j.dcn.2016.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 12/14/2015] [Accepted: 01/05/2016] [Indexed: 11/29/2022] Open
Abstract
Changes in ERPs and oscillatory dynamic occur during auditory sentence processing. Adults are significantly better at identifying syntactic errors compared to children. Adults display a significant P600 effect and theta/beta power decrease. Children display a significant N400 effect and smaller decrease in theta/beta power. These findings suggest syntactic processing skills are still developing by age 12.
Although very young children process ongoing language quickly and effortlessly, research indicates that they continue to improve and mature in their language skills through adolescence. This prolonged development may be related to differing engagement of semantic and syntactic processes. This study used event related potentials and time frequency analysis of EEG to identify developmental differences in neural engagement as children (ages 10–12) and adults performed an auditory verb agreement grammaticality judgment task. Adults and children revealed very few differences in comprehending grammatically correct sentences. When identifying grammatical errors, however, adults displayed widely distributed beta and theta power decreases that were significantly less pronounced in children. Adults also demonstrated a significant P600 effect, while children exhibited an apparent N400 effect. Thus, when identifying subtle grammatical errors in real time, adults display greater neural activation that is traditionally associated with syntactic processing whereas children exhibit greater activity more commonly associated with semantic processing. These findings support previous claims that the cognitive and neural underpinnings of syntactic processing are still developing in adolescence, and add to them by more clearly identifying developmental changes in the neural oscillations underlying grammatical processing.
Collapse
|
40
|
Skeide MA, Brauer J, Friederici AD. Brain Functional and Structural Predictors of Language Performance. Cereb Cortex 2015; 26:2127-39. [DOI: 10.1093/cercor/bhv042] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
41
|
Ruck L. Manual praxis in stone tool manufacture: implications for language evolution. BRAIN AND LANGUAGE 2014; 139:68-83. [PMID: 25463818 DOI: 10.1016/j.bandl.2014.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 09/27/2014] [Accepted: 10/13/2014] [Indexed: 06/04/2023]
Abstract
Alternative functions of the left-hemisphere dominant Broca's region have induced hypotheses regarding the evolutionary parallels between manual praxis and language in humans. Many recent studies on Broca's area reveal several assumptions about the cognitive mechanisms that underlie both functions, including: (1) an accurate, finely controlled body schema, (2) increasing syntactical abilities, particularly for goal-oriented actions, and (3) bilaterality and fronto-parietal connectivity. Although these characteristics are supported by experimental paradigms, many researchers have failed to acknowledge a major line of evidence for the evolutionary development of these traits: stone tools. The neuroscience of stone tool manufacture is a viable proxy for understanding evolutionary aspects of manual praxis and language, and may provide key information for evaluating competing hypotheses on the co-evolution of these cognitive domains in our species.
Collapse
Affiliation(s)
- Lana Ruck
- Department of Anthropology, Florida Atlantic University, 777 Glades Rd., Boca Raton, FL, USA.
| |
Collapse
|
42
|
Nodes and networks in the neural architecture for language: Broca's region and beyond. Curr Opin Neurobiol 2014; 28:136-41. [PMID: 25062474 DOI: 10.1016/j.conb.2014.07.013] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 07/03/2014] [Accepted: 07/03/2014] [Indexed: 11/21/2022]
Abstract
Current views on the neurobiological underpinnings of language are discussed that deviate in a number of ways from the classical Wernicke-Lichtheim-Geschwind model. More areas than Broca's and Wernicke's region are involved in language. Moreover, a division along the axis of language production and language comprehension does not seem to be warranted. Instead, for central aspects of language processing neural infrastructure is shared between production and comprehension. Three different accounts of the role of Broca's area in language are discussed. Arguments are presented in favor of a dynamic network view, in which the functionality of a region is co-determined by the network of regions in which it is embedded at particular moments in time. Finally, core regions of language processing need to interact with other networks (e.g. the attentional networks and the ToM network) to establish full functionality of language and communication.
Collapse
|
43
|
Skeide MA, Brauer J, Friederici AD. Syntax gradually segregates from semantics in the developing brain. Neuroimage 2014; 100:106-11. [PMID: 24927987 DOI: 10.1016/j.neuroimage.2014.05.080] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 05/02/2014] [Accepted: 05/28/2014] [Indexed: 11/15/2022] Open
Abstract
An essential computational component of the human language faculty is syntax as it regulates how words are combined into sentences. Although its neuroanatomical basis is well-specified in adults, its emergence in the maturing brain is not yet understood. Using event-related functional magnetic resonance imaging (fMRI) in a cross-sectional design, we discovered, that in contrast to what is known about adults 3-to-4- and 6-to-7-year-old children do not process syntax independently from semantics at the neural level already before these two types of information are integrated for the interpretation of a sentence. It is not until the end of the 10th year of life that children show a neural selectivity for syntax, segregated and gradually independent from semantics, in the left inferior frontal cortex as in the adult brain. Our results indicate that it takes until early adolescence for the domain-specific selectivity of syntax within the language network to develop.
Collapse
Affiliation(s)
- Michael A Skeide
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany.
| | - Jens Brauer
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
| |
Collapse
|
44
|
Abstract
In the past two decades, neuroimaging investigations of stuttering have led to important discoveries of structural and functional brain differences in people who stutter, providing significant clues to the neurological basis of stuttering. One major limitation, however, has been that most studies so far have only examined adults who stutter, whose brain and behavior likely would have adopted compensatory reactions to their stuttering; these confounding factors have made interpretations of the findings difficult. Developmental stuttering is a neurodevelopmental condition, and like many other neurodevelopmental disorders, stuttering is associated with an early childhood onset of symptoms and greater incidence in males relative to females. More recent studies have begun to examine children who stutter using various neuroimaging techniques that allow examination of functional neuroanatomy and interaction of major brain areas that differentiate children who stutter compared with age-matched controls. In this article, I review these more recent neuroimaging investigations of children who stutter, in the context of what we know about typical brain development, neuroplasticity, and sex differences relevant to speech and language development. Although the picture is still far from complete, these studies have potential to provide information that can be used as early objective markers, or prognostic indicators, for persistent stuttering in the future. Furthermore, these studies are the first steps in finding potential neural targets for novel therapies that may involve modulating neuroplastic growth conducive to developing and maintaining fluent speech, which can be applied to treatment of young children who stutter.
Collapse
Affiliation(s)
- Soo-Eun Chang
- Department of Psychiatry, Child and Adolescent Psychiatry, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
45
|
Joseph RM, Fricker Z, Fenoglio A, Lindgren KA, Knaus TA, Tager-Flusberg H. Structural asymmetries of language-related gray and white matter and their relationship to language function in young children with ASD. Brain Imaging Behav 2014; 8:60-72. [PMID: 23888326 DOI: 10.1007/s11682-013-9245-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Children with autism spectrum disorder (ASD) are highly variable in their language abilities, but the neural bases of these individual differences are poorly understood. Structural magnetic resonance imaging (MRI) and magnetic resonance diffusion tensor imaging (DTI) tractography were used to examine asymmetries in language-related gray- and white-matter and their relationships to language ability in a sample of 20 children with ASD, aged 4-7 years, and a reference sample of 20 typically developing (TD) children, aged 6-11 years. Children with ASD did not differ significantly from TD children in gray matter asymmetries, but were significantly less left-lateralized than TD children in the volume and radial diffusivity (RD) of the arcuate fasciculus (AF). They did not differ in the fractional anisotropy (FA) or the mean or axial diffusivity of the AF. Within the ASD group, exploratory analyses revealed that decreased leftward/increased rightward asymmetry of pars opercularis was associated with higher language ability and bilaterally increased FA and decreased RD of the AF. In conclusion, children with ASD exhibited atypical asymmetry in language-related white-matter structure as well as an atypical pattern of brain-language relationships that suggest that they may meet language milestones and acquire normal language via a different neurodevelopmental trajectory from TD children.
Collapse
Affiliation(s)
- Robert M Joseph
- Department of Anatomy and Neurobiology, Boston University School of Medicine, 72 E. Concord St., L-816, Boston, MA, 02118, USA,
| | | | | | | | | | | |
Collapse
|
46
|
Pletikos M, Sousa AMM, Sedmak G, Meyer KA, Zhu Y, Cheng F, Li M, Kawasawa YI, Sestan N. Temporal specification and bilaterality of human neocortical topographic gene expression. Neuron 2013; 81:321-32. [PMID: 24373884 DOI: 10.1016/j.neuron.2013.11.018] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2013] [Indexed: 01/09/2023]
Abstract
Transcriptional events involved in the development of human cerebral neocortex are poorly understood. Here, we analyzed the temporal dynamics and laterality of gene expression in human and macaque monkey neocortex. We found that interareal differences exhibit a temporal hourglass pattern, dividing the human neocortical development into three major phases. The first phase, corresponding to prenatal development, is characterized by the highest number of differential expressed genes among areas and gradient-like expression patterns, including those that are different between human and macaque. The second, preadolescent phase, is characterized by lesser interareal expression differences and by an increased synchronization of areal transcriptomes. During the third phase, from adolescence onward, differential expression among areas increases again driven predominantly by a subset of areas, without obvious gradient-like patterns. Analyses of left-right gene expression revealed population-level global symmetry throughout the fetal and postnatal time span. Thus, human neocortical topographic gene expression is temporally specified and globally symmetric.
Collapse
Affiliation(s)
- Mihovil Pletikos
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Graduate Program in Neuroscience, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - André M M Sousa
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Graduate Program in Areas of Basic and Applied Biology, Abel Salazar Biomedical Sciences Institute, University of Porto, 4099-003 Porto, Portugal
| | - Goran Sedmak
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Graduate Program in Neuroscience, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Kyle A Meyer
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Ying Zhu
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Feng Cheng
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Mingfeng Li
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yuka Imamura Kawasawa
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Nenad Sestan
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
47
|
Specht K. Neuronal basis of speech comprehension. Hear Res 2013; 307:121-35. [PMID: 24113115 DOI: 10.1016/j.heares.2013.09.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/15/2013] [Accepted: 09/19/2013] [Indexed: 01/18/2023]
Abstract
Verbal communication does not rely only on the simple perception of auditory signals. It is rather a parallel and integrative processing of linguistic and non-linguistic information, involving temporal and frontal areas in particular. This review describes the inherent complexity of auditory speech comprehension from a functional-neuroanatomical perspective. The review is divided into two parts. In the first part, structural and functional asymmetry of language relevant structures will be discus. The second part of the review will discuss recent neuroimaging studies, which coherently demonstrate that speech comprehension processes rely on a hierarchical network involving the temporal, parietal, and frontal lobes. Further, the results support the dual-stream model for speech comprehension, with a dorsal stream for auditory-motor integration, and a ventral stream for extracting meaning but also the processing of sentences and narratives. Specific patterns of functional asymmetry between the left and right hemisphere can also be demonstrated. The review article concludes with a discussion on interactions between the dorsal and ventral streams, particularly the involvement of motor related areas in speech perception processes, and outlines some remaining unresolved issues. This article is part of a Special Issue entitled Human Auditory Neuroimaging.
Collapse
Affiliation(s)
- Karsten Specht
- Department of Biological and Medical Psychology, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway; Department for Medical Engineering, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
48
|
Brown EC, Jeong JW, Muzik O, Rothermel R, Matsuzaki N, Juhász C, Sood S, Asano E. Evaluating the arcuate fasciculus with combined diffusion-weighted MRI tractography and electrocorticography. Hum Brain Mapp 2013; 35:2333-47. [PMID: 23982893 DOI: 10.1002/hbm.22331] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/23/2013] [Accepted: 04/25/2013] [Indexed: 11/08/2022] Open
Abstract
The conventional model of language-related brain structure describing the arcuate fasciculus as a key white matter tract providing a direct connection between Wernicke's region and Broca's area has been called into question. Specifically, the inferior precentral gyrus, possessing both primary motor (Brodmann Area [BA] 4) and premotor cortex (BA 6), has been identified as a potential alternative termination. The authors initially localized cortical sites involved in language using measurement of event-related gamma-activity on electrocorticography (ECoG). The authors then determined whether language-related sites of the temporal lobe were connected, via white matter structures, to the inferior frontal gyrus more tightly than to the precentral gyrus. The authors found that language-related sites of the temporal lobe were far more likely to be directly connected to the inferior precentral gyrus through the arcuate fasciculus. Furthermore, tractography was a significant predictor of frontal language-related ECoG findings. Analysis of an interaction between anatomy and tractography in this model revealed tractrography to have the highest predictive value for language-related ECoG findings of the precentral gyrus. This study failed to support the conventional model of language-related brain structure. More feasible models should include the inferior precentral gyrus as a termination of the arcuate fasciculus. The exact functional significance of direct connectivity between temporal language-related sites and the precentral gyrus requires further study.
Collapse
Affiliation(s)
- Erik C Brown
- MD/PhD Program, School of Medicine, Wayne State University, Detroit, Michigan; Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, Michigan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Falk D, Lepore FE, Noe A. The cerebral cortex of Albert Einstein: a description and preliminary analysis of unpublished photographs. Brain 2013; 136:1304-27. [PMID: 23161163 PMCID: PMC3613708 DOI: 10.1093/brain/aws295] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/21/2012] [Accepted: 08/17/2012] [Indexed: 01/05/2023] Open
Abstract
Upon his death in 1955, Albert Einstein's brain was removed, fixed and photographed from multiple angles. It was then sectioned into 240 blocks, and histological slides were prepared. At the time, a roadmap was drawn that illustrates the location within the brain of each block and its associated slides. Here we describe the external gross neuroanatomy of Einstein's entire cerebral cortex from 14 recently discovered photographs, most of which were taken from unconventional angles. Two of the photographs reveal sulcal patterns of the medial surfaces of the hemispheres, and another shows the neuroanatomy of the right (exposed) insula. Most of Einstein's sulci are identified, and sulcal patterns in various parts of the brain are compared with those of 85 human brains that have been described in the literature. To the extent currently possible, unusual features of Einstein's brain are tentatively interpreted in light of what is known about the evolution of higher cognitive processes in humans. As an aid to future investigators, these (and other) features are correlated with blocks on the roadmap (and therefore histological slides). Einstein's brain has an extraordinary prefrontal cortex, which may have contributed to the neurological substrates for some of his remarkable cognitive abilities. The primary somatosensory and motor cortices near the regions that typically represent face and tongue are greatly expanded in the left hemisphere. Einstein's parietal lobes are also unusual and may have provided some of the neurological underpinnings for his visuospatial and mathematical skills, as others have hypothesized. Einstein's brain has typical frontal and occipital shape asymmetries (petalias) and grossly asymmetrical inferior and superior parietal lobules. Contrary to the literature, Einstein's brain is not spherical, does not lack parietal opercula and has non-confluent Sylvian and inferior postcentral sulci.
Collapse
Affiliation(s)
- Dean Falk
- Department of Anthropology, Florida State University, Tallahassee, FL 32306-7772, USA.
| | | | | |
Collapse
|
50
|
Passingham RE. What we can and cannot tell about the wiring of the human brain. Neuroimage 2013; 80:14-7. [PMID: 23321152 DOI: 10.1016/j.neuroimage.2013.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 12/12/2012] [Accepted: 01/07/2013] [Indexed: 12/24/2022] Open
Abstract
It was 20 years ago that Crick and Jones lamented the fact that human neuroanatomy was backward. They would be astonished to read the contents of this issue. At that time they had not foreseen what could be achieved by the combination of diffusion imaging and the study of resting state covariance. This paper assesses what can and cannot be done with the methods that we now have.
Collapse
Affiliation(s)
- Richard E Passingham
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford OX1 3UD, UK.
| |
Collapse
|